
U s e r’ s G u i d e

T B P W 1.1

Dyutiman Das, William Mattson, Nichols A. Romero, Richard M. Martin

University of Illinois at Urbana-Champaign
Materials Computation Center

July 7, 2004

Available on-line at
http://www.mcc.uiuc.edu/software/

http://ElectronicStructure.org

Coordinated with the book:
“Electronic Structure: Basic Theory and Practical Methods,” by Richard M. Martin,

Cambridge University Press, 2004.
http://books.cambridge.org/0521782856.htm

Comments
tbpw@mcc.uiuc.edu



1 INTRODUCTION

TBPW is an electronic structure code primarily intended for pedagogical purposes. It is written
from the ground-up in a modular style using Fortran 90. This code is composed of three distinct
parts: empirical tight binding (TB), empirical pseudopotential plane wave (PW), and features
common to all band structure codes (Common).

The main characteristics of these codes are:

• Readily provides band structure plots

• TB implements the Slater-Koster 2-center formalism. Options are provided for simple
models (Harrison or user specified) or a completely general approach using a rotation
matrix formalism that allows the use of orbitals with arbitrary angular momentum (`).

• PW implements the plane wave method for any local potential or pseudopotential. Several
choices for potentials are provided and the user can add others. The bands can be found
using direct diagonalization or a conjugate gradient method. Additionally, there is a plane
wave density (PWD) code which outputs the electron density on a grid.

The code is coordinated with the description given in the book and associated web site:

• Electronic Structure: Basic Theory and Practical Methods, by Richard M. Mar-
tin, Cambridge University Press, 2004.
(See http://books.cambridge.org/0521782856.htm).

• ElectronicStructure.org is the web site (http://ElectronicStructure.org) for new mate-
rial and updates, including links to TBPW and many other codes.

The input uses keywords (“tags”) and input data chosen to coordinate with those used by
the SIESTA code (http://www.uam.es/departamentos/ciencias/fismateriac/siesta/), which is
a full self-consistent ab initio pseudopotential local orbital code.

Two technical papers describing the methods implemented in this code are located in Doc.

• tight binding.pdf describes tight binding plus the rotation matrix implementation used
to handle orbitals of arbitrary angular momentum.

• conj grad.pdf describes the conjugate gradient method used in the PW code.

1



2 QUICK START

2.1 Compilation

There is a machine independent makefile included in the source root directory. Make should
always be run from this directory. The machine dependent makefile are located in directory
named Sys. Find a suitable makefile for your architecture, and then copy or link to arch.make

located in the source root directory. Note that arch.make is included by the main makefile.

The sources files are organized in three directories: TB, PW, and Common. Modules which are
shared by both TB and PW codes are placed in the Common directory.

There are three targets to make:

• tb – the tight binding code

• pw – the plane wave code

• pwDensity – the plane wave code that produces the electron density on a grid

Typing make plus the target name will create the create the executable in its respective source
directory.

2.2 Libraries

TBPW is linked against the LAPACK and BLAS libraries. They can be downloaded from
http://www.netlib.org/. The appropriate variables in the machine dependent makefile will
require modification. Because different compilers handle calls to external functions differ-
ently, the following two preprocessor flags are available for adding underscores to LAPACK
(-DAUSLAPCK) and BLAS (-DAUSBLAS). If you get undefined reference errors in the exter-
nal subroutine calls to LAPACK or BLAS, try using these flags.

2.3 Running the program

Some example input files along with their corresponding bands structure plots are provided in
the directory TBPW/TB/Examples and TBPW/PW/Examples. The tight binding and plane wave
codes are executed follows:

./pw

OR

./tb

At the Input File Name prompt, type the filename including any extension. The band structure
output file can be easily plotted with gnuplot by typing

gnuplot gnuplot.dat

2



This also creates a band structure plot file band.ps

2.4 Getting help with the code

To post questions or comments about TBPW send an e-mail to tbpw@mcc.uiuc.edu. You can
subscribe to this mailing list by sending e-mail to tbpw-subscribe@mcc.uiuc.edu.

3



3 REVISION HISTORY

3.1 Changes with respect to version 1.0

1. The tag DiagonalizationSwitch no longer supports option 2 - Conjugate gradient
method + FFT. As a result, TBPW does not need the FFTW library.

2. The value for the tag LminAndLmax does not need to be specified in the input file
explictly. It is determined by the program at run time.

3. Tag Channel renamed to NumChannelsPerSpecie.

4. Introduction of new tag TightBindingModelType.

4



4 INPUT DATA FILE

4.1 Format of Input File

All information is read in using the “Taghandler” routine to search for a “tag” and then reading
the desired information on the same line as the tag or the following line(s). Tags are listed below
with description of the data to be read in, example inputs, and default value(s). Tags can be
in any order and the Taghandler” routine always finds only the first occurrence of a tag. Tags
listed under section Tight binding, Plane wave, and Plane wave density are specific to
their respective methods. TB specific tags are ignored by PW and PWD, PW specific tags are
ignored by PWD and TB, etc.

The tags are chosen to coordinate with those used by the SIESTA code,
http://www.uam.es/departamentos/ciencias/fismateriac/siesta/.

Except were noted otherwise, all input and output parameters are in atomic units: energy in
Hartrees and length in Bohr.

4.2 General System Descriptors

NumberOfAtoms (integer): Number of atoms per primitive cell in the calculation. For an
isolated system this is the total number of atoms.

NumberOfAtoms 2

Default value: No default. Variable must be supplied.

NumberOfDimensions (integer): This defines the dimension of the space used the calculation.
Lattice vectors and basis vectors (atom coordinates) are stored in arrays of dimension ndim
read in after NumberOfDimensions tag. In PW this means the space dimension, which can
be any dimension 1, 2, 3, . . .. In TB this defines the dimension of the lattive and atomic
coordinates; the orbitals included in the calculation are defined by the model and/or input
file. (For example, a line of atoms is defined by ndim =1, whereas a nanotube is defined
in a 3-dimensional space with ndim =1. For a nanotube, the orbitals can be chosen to be
the full set of s, px, py, pz, or one can treat only the π orbitals, etc.)

NumberOfDimensions 3

Default value: 3

NumberOfSpecies (integer): Number of different atomic species in the calculation. Atoms of
the same species, but with different potential parameters are counted as different species.
As of this moment, multiple species have no function in the PW code.

NumberOfSpecies 2

Default value: 1

5



ChemicalSpeciesLabel (data block): It specifies the different chemical species that are
present, assigning them a number for further identification.

ChemicalSpeciesLabel

1 31 Ga

2 33 As

The first number in the line is the species number (assumed to be in sequential order), it
is followed by the atomic number, and then by the desired label.

In PW the label must be one of the labels for which there is a defined potential. At present,
potentials provided in the code are limited to: Ga, As, and Si (empirical pseudopotentials);
H (Coulomb potential screened with Thomas-Fermi function for rs = 1.0); and El (Empty
lattice - free electrons with zero potential). Additional potentials can be added to module
located in atomPotentialMod.f90.

In TB the label merely is a convenient label for the species. For example one can chose
input such as

ChemicalSpeciesLabel

1 14 Si

2 14 Si_surface

Default value: No default. Input must be supplied.

4.3 Lattice and coordinates

LatticeConstant (real): This defines the scale of the lattice vectors (Bohr).

LatticeConstant 10.6769569

Default value: 1 Bohr

LatticeVectors (data block): The lattices vectors are read in units of the lattice constant
defined above. There are NumberOfDimensions basis vectors each with NumberOfDimen-
sions components.

LatticeVectors

0.0 0.5 0.5

0.5 0.0 0.5

0.5 0.5 0.0

Default value: No default. Variable must be supplied.

AtomicCoordinatesFormat (string): Character string to specify the format of the atomic
positions in input. These can be expressed in two forms:

6



• ScaledCartesian (atomic positions are given in Cartesian coordinates, in units of
the lattice constant)

• ScaledByLatticeVectors (atomic positions are given referred to the lattice vectors)

Default value: ScaledByLatticeVectors

AtomicCoordinatesAndAtomicSpecies (data block): The data is read as follows:

From i = 1 to totalNumAtoms

read: atomCoordinates(:,i) speciesOfAtom(i)

Default value: No default. Variable must be supplied.

InputEnergiesInEV : This tag does not store any value. If this tag is found, the input
energies are in eV. If this tag is omitted, input energies are in Hartrees. This effects
OrbitsAndEnergies, SKMatrices in TB and EnergyCutoff in PW. Output energies
are still in Hartrees.

4.4 k-point sampling and band structure plots

KPointsScale (string): Specifies the scale of the k-vectors given in the KPointsAndLabels

below. The available options are:

• TwoPi/a (k-point vector coordinates are given in Cartesian coordinates, in units of
2π/a, where a is the lattice constant)

• ReciprocalLatticeVectors (k-point vectors are given in reciprocal lattice vector
coordinates)

Default value: ReciprocalLatticeVectors

NumberOfKPoints (data block): Read in NumberOfKPoints from the input file in units
determined by KPointsScale.

NumberOfKPoints

2

0.0 0.0 0.0

0.25 0.25 0.25

Note that this tag is incompatible with KPointsAndLabels. For the moment, this option
has no function outside PWD code.

Default value: No default. Variable must be supplied.

KPointsAndLabels (data block): Specifies the lines along which band energies are calculated.
Here is an example for FCC lattice using the option ReciprocalLatticeVectors:

7



KPointsAndLabels

0.0 0.0 0.0 Ga

0.375 0.375 0.75 K

0.5 0.5 0.5 L

0.0 0.0 0.0 Ga

0.0 0.5 0.5 X

0.25 0.625 0.625 U

The last column (mandatory) is a LaTeX label for use in the band plot. Note that this tag
is incompatible with NumberOfKPoints. This option has no useful function outside of
PW and TB code.

Default value: No default. Variable must be supplied.

NumberOfLines (integer): Number of directions in the reciprocal lattice along which the
bands are to be plotted. This value cannot exceed the number of special k-points used
KPointsAndLabels minus one. For example, if NumberOfLines equals 4, the band
structure is only calculated from Ga – X in the aforementioned FCC lattice. This tag is
required if using KPointsAndLabels.

NumberOfLines 5

Default value: No default. Variable must be supplied.

NumberOfDivisions (integer): The number of divisions per line in k-space. This tag is
required if using KPointsAndLabels.

NumberOfDivisions 15

NumberOfBands 10 Default value: No default. Variable must be supplied.

NumberOfBands (integer): The number of bands to plot must be less than the total number
of orbitals (i.e. basis).

NumberOfBands 10

Default value: No default. Variable must be supplied.

4.5 Tight binding

TightBindingModelType (integer): Choice of model:

• 0 General Method using rotation matrices that works for any angular momentum.
Requires input number of channels for each specie and input of Slater-Koster arrays
with F and K parameters. See below for description.

8



• 1 Harrison universal parameters. See Harrison, ”Elec. Str. and Props. of Solids”.
Assumes only one channel for each specie (default value - no need for input of num-
ber of channels. Must read in on-site energies using OrbitsAndEnergies. No other
parameters are read in; two center integrals are defined solely in terms of universal
parameters and the distances between neighbors.

• 10 or greater Special models defined by the
subroutine TBParamsSpecial. Parameters are read in using the TightBindingPa-
rameters tag. This is the only routine that must be changed to define a new model.
Examples include:

– 10 Any crystal with one s-state per site and only one nearest-neighbor 2-center
hopping matrix element. The value is defined as first entry under TightBind-
ingParameters which applies to all neighbors below a cutoff radius defined by
the second entry under TightBindingParameters. All other information is in
the structure and the OrbitsAndEnergies. Examples that can be treated this
way include any of the s-bands for elemental crystals in texts such as Ashcroft
and Mermin, Kittel, etc., and π bands of a graphene layer and a buckyball or
nanotube in the pure π state approximation.

TightBindingParameters

2

1.0

1.1

– 11 Same as above with first and second neighbor 2-center hopping matrix el-
ements. The values are defined under TightBindingParameters: Entry 1 - n.n.
matrix element; Entry 2 - cutoff distance for n.n.; Entry 3 - n.n.n. matrix element;
Entry 4 - cutoff distance for n.n.n.

TightBindingParameters

4

1.0

1.1

0.3

2.2

– 12 A model of an ionic crystal with two atoms per cell, one with one s-state and
one with p-states. The value is defined under TightBindingParameters: Entry 1
- n.n. s-p sigma matrix element; Entry 2 - cutoff distance for n.n. The onsite
energies are defined under OrbitsAndEnergies.

TightBindingModelType 1

Default value: 0 (General Method - requires input of Slater-Koster arrays with F and K
parameters)

MaximumDistance (real): The interaction cutoff distance in Bohr units.

MaximumDistance 5.5

9



Default value: No default. Variable must be supplied.

NumChannelsPerSpecie (data block): The total number of electron channels for each chemi-
cal species. The distinct channels corresponds to the different principal quantum numbers.

NumChannelsPerSpecie

1 2

The first number is the ChemicalSpeciesLabel while the second number is the total
number of channels. If the chemical species were nitrogen for example, the first channel
would be the 1s e− while the second channel would include the 2s and 2p e−. Note that the

number of channels does not impose any restriction on the number of available orbitals.

Default value: Default = 1.

OrbitsAndEnergies (data block): The on-site Slater-Koster parameters (also called ”orbital
energies”) for each species, channel and specific orbital are specified in units determined
by the switch InputEnergiesInEV.

OrbitsAndEnergies

1 1 4

0 0 -4.2

1 1 1.715

1 2 1.715

1 3 1.715

1 2 1

0 0 6.68

In the example above, the first and sixth line provides the species number, channel number,
and number of orbitals. The number of orbitals does refers to the number orbitals in the
basis for that particular specie and channel. It does not refer to the number of occupied
orbitals.

The second through fifth line and the seventh line specify the angular momentum, orbital

ID, and orbital energy. There will be such a line for each orbital.

The order of the orbitals is defined for each model type:

0 For type 0 (General rotation matrix method) the orbitals are real spherical harmonics.
For each angular momentum `, 2` + 1 orbitals must be listed. The order is given
below.

1 For type 1 (Harrison universal model) the orbitals are real spherical harmonics are the
same as for model 0, except that only up to ` = 1 is supported at present.

>=10 These are specially coded models and it is up to the user to determine the order
and the meaning of the orbitals.

10



For a given `, all 2` + 1 orbital energies must be specified. The only allowed orbital ID for
` = 0 is 0, for ` = 1 is 1 thru 3, for ` = 2 is 4 thru 8, for ` is `2 thru `2 +2`. The orbital ID
refers to the real orbitals constructed from linear combinations of the spherical harmonics
(Ylm). The precise order of the orbitals is defined as done by many authors, e.g., see

http://www.cachesoftware.com/mopac/Mopac2002manual/real_spherical_harmonics.html

for the expressions for the orbitals in order for ` up to 3. However, other authors may use
a different order. For a particular `, the orbital ID `2 refer to the real orbital of the form
Y`0. The next orbital ID, `2 + 1, refers to the real orbital of the form (Y`−1 − Y ∗

`+1
)/
√

2.

The next next orbital ID, `2 + 2, refers to the real orbital of the form i(Y`−1 + Y ∗

`+1
)/
√

2.
After the real orbital whose ID equals `2, the orbitals alternate between those of the form

1√
2

(Yl−m + (−1)mY ∗

lm)

and those of the form

i√
2

(Yl−m − (−1)mY ∗

lm)

where m is the azimuthal quantum number.

Table 1: Orbital ID for ` = 0 thru ` = 2

orbital ID real orbital

0 s
1 pz

2 px

3 py

4 d3z2
−r2

5 dxz

6 dyz

7 dx2
−y2

8 dxy

Default value: No default. Variable must be supplied.

numSKparams (integer): (Used only for TightBindingModelType 0 - General rotation
method.) Number of Slater-Koster parameters to be read in. It is only necessary to
specify the non-zero Slater-Koster values.

numSKparams 5

Default value: No default. Variable must be supplied for TightBindingModelType 0.

SKMatrices (data block): (Used only for TightBindingModelType 0 - General rotation
method.) There will be numSKparams lines with the following input:
`i `j m ni nj speciesi speciesj F K

11



SKMatrices

0 0 0 1 1 1 1 0.0 -2.075

0 1 0 1 1 1 1 0.0 2.480816372

1 1 0 1 1 1 1 0.0 2.71625

1 1 1 1 1 1 1 0.0 -0.715

1 0 0 1 2 1 1 0.0 -2.327399971

F contains the distance dependent part of the Slater-Koster matrix, while K contains the
distance independent part. The Slater-Koster matrix is

K × RF
ij

where Rij is the separation between atoms i and j. where F is a real number and K is
units of determined by InputEnergiesInEV times Bohr−F .

The Slater-Koster matrix has many symmetries. It is diagonal in m and since ±m are
equivalent only |m| is needed. The following symmetries are also imposed,

F (`j , `i, m, nj , ni, speciesj , speciesi) = F (`i, `j , m, ni, nj , speciesi, speciesj)

K(`j , `i, m, nj , ni, speciesj , speciesi) = (−1)`i+`j ∗ K(`i, `j , m, ni, nj , speciesi, speciesj)

Default value: Any Slater-Koster parameter not specified is set to zero. Used only for
TightBindingModelType 0.

4.6 Plane wave

PW carries out calculations of bands using a plane wave basis. The calculation is done with
a fixed potential (not self-consistent) which may be any form of a spherical potential V (r)
around each atom site. For realistic calculations the potential must be chosen to be a reasonable
representation of the true total potential or pseudopotential in the crystal. The potential is
specified by the label ChemicalSpeciesLabel in which must be one of the labels for which
there is a defined potential. At present, potentials provided in the code are limited to: Ga,
As, and Si (empirical pseudopotentials); H (Coulomb potential screened with Thomas-Fermi
function for rs = 1.0); and El (Empty lattice - free electrons with zero potential). Additional
potentials can be added to module located in atomPotentialMod.f90.

EnergyCutoff (real): Defines the plane wave cutoff (in Hartree units unless the tag InputEn-

ergyInEV is present in the input file).

EnergyCutOff 6.0

Default value: No default. Variable must be supplied.

DiagonalizationSwitch (integer): The available methods for calculating eigenvalues and
eigenvectors are:

12



0 – Direct matrix inversion

1 – Conjugate gradient method

Conjugate gradient is more efficient than direct matrix inversion for matrices of rank 700
or larger.

DiagonalizationSwitch 0

Default value: 0

CGIterationPeriod (integer): Occasionally, the initial trial eigenvector is “bad.” CGIter-

ationPeriod is the number of retries. Typical values for this tag are between 1 and
5.

CGIterationPeriod 1

Default value: 1

CGTolerance (real): Specifies the tolerance on the energy eigenvalues; in Hartree unless the
tag InputEnergyInEV is present in the input file.

CGTolerance 1.d-4

Default value: No default. Variable must be supplied.

4.7 Plane wave density

MonkHorstPack (data block): The number of division per dimension to sample in the first
Brillouin zone.

MonkHorstPack

2 2 2

Default value: Gamma point of the cell.

NumberOfOccupiedBands (integer): 2×NumberOfOccupiedBands must equal the num-
ber of electrons.

Default value: No default. Variable must be supplied.

13



5 ACKNOWLEDGEMENTS

This material is based upon work supported by the Materials Computation Center at the Univer-
sity of Illinois funded by the NSF under Award No. 99-76550 and the Frederick Seitz Materials
Research Lab funded by DOE under Award No. DEFG-96-ER45439.

14



6 LICENSE

Illinois Open Source License
University of Illinois/NCSA

Open Source License

Copyright c© 2003, University of Illinois Board of Trustees. All rights reserved.

Developed by:

Electronic Structure Group
University of Illinois, Department of Physics
http://www.physics.uiuc.edu/research/ElectronicStructure/

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal with the Software without restric-
tion, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimers in the documentation and/or other materials
provided with the distribution.

• Neither the names of the Electronic Structure Group, the University of Illinois, nor the
names of its contributors may be used to endorse or promote products derived from this
Software without specific prior written permission.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.

15


