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Quantum Monte Carlo (QMC) is an extremely powerful method to treat many-body systems.

Usually QMC has been applied in cases where the interaction potential has a simple analytic form,

like the 1/r Coulomb potential. However, in a complicated environment as in a semiconductor

heterostructure, the evaluation of the interaction itself becomes a non-trivial problem. Obtaining

the potential from any grid-based finite-difference method, for every walker and every step is unfea-

sible. We demonstrate an alternative approach of solving the Poisson equation by a classical Monte

Carlo within the overall QMC scheme. We have developed a modified “Walk On Spheres”(WOS)

algorithm using Green’s function techniques, which can efficiently account for the interaction en-

ergy of walker configurations, typical of QMC algorithms. This stochastically obtained potential

can be easily incorporated within popular QMC techniques like variational Monte Carlo (VMC)

or diffusion Monte Carlo(DMC). We demonstrate the validity of this method by studying a simple

problem, the polarization of a helium atom in the electric field of an infinite capacitor. Then we

apply this method to calculate the singlet-triplet splitting in a realistic heterostructure device. We

also outline some other prospective applications for spherical quantum dots where the dielectric

mismatch becomes an important issue for the addition energy spectrum.

iii



To all those who inspired me, both living and dead.

iv



Acknowledgments

This thesis was made possible by the patronage and support of a large number of people through

direct assistance, advice or just by being there, a support so crucial during the long years of graduate

school. I am much indebted to them all. A few words of gratitude does not do justice to the true

impact of the community (professional, social and personal) on this work and my general education.

Here I attempt to thank the most prominent among them.

The most prominent influence of all, has been of course my tutelage under Prof. Richard Martin.

I recall with both relief and heartfelt gratitude of how Richard accepted me as a student in spite

of my considerable indecisiveness. It was the summer of 2000; I needed to figure out which area of

research I would pursue for the rest of my life (or so I thought then). But the diversity in sub-areas

of physics available for research overwhelmed me and I was unable to make up my mind. I had

talked to Richard before, but had decided to work in plasma physics for the summer. At the end

of that summer I came back, and Richard was still willing to accommodate me. Another week of

indecision followed, and with help from Prof. Jim Wolfe (then graduate chair) I was able to obtain

a teaching assistantship (even though classes had started for fall). Without the understanding and

support of these two men, I would be writing a very different thesis; I am very grateful for the

opportunity I was given.

Over the years that followed, I found Richard to be one of the most caring, supportive and

patient men I have ever known. As an adviser he gave me a lot of attention even when he was on

sabbatical; we worked very closely in the initial stages of the project, and yet he allowed me the

freedom to develop my own ideas and steer the project as I saw fit. His deep insight and broad

knowledge of the field was immensely helpful; his continuous support and encouragement was a

driving force behind this work. I would also like to thank him for providing me with the wonderful

opportunity to visit The Lawrence Livermore National Laboratories twice in Livermore, CA during

v



his sabbatical there. Also because of his support I was able to visit different cities in the United

States while attending the APS March meetings. Many thanks to Richard for everything.

Jeongnim Kim joined our research group in the fall of 2001, and over the course of time became

almost my second adviser. Whenever I had questions or doubts, she made time even when she was

busy. She was invaluable in providing computer support, compiling arcane codes or implementing

the latest parsers. She facilitated my transition from FORTRAN to C++, and imparted numerous

tips, like those that are not often found in books but which comes from long years of experience.

Most of the calculations of this thesis were carried out using QMC++ an object oriented quantum

Monte Carlo code jointly written by Jeongnim Kim and Jordan Vincent. Not just writing the basic

code, Jeongnim also provided me with constant help in implementing my algorithms within the

overall structure of QMC++. I owe a lot to Jeongnim.

The ideas behind this thesis grew long before my entry into the field, through works of David

Ceperley and John Shumway. Thanks are due to David for coming up with this neat idea of

solving the potential by a Monte Carlo, during the quantum Monte Carlo simulation. David’s

presence has been a great influence, he was extremely helpful in introducing me to the penalty

method which we adapted into the algorithm. Time and again he has made several suggestions and

insights which have increased my understanding of Monte Carlo in general. His class on “Atomic

Scale Simulations” was my first introduction to Monte Carlo. I must also thank John Shumway

for several comments regarding spherical dots, and volunteering his QMC code. Though I used

QMC++, initially going through his code was a very good learning process.

Another person instrumental to this project has been Dr. Mal Kalos. I met Dr. Kalos during

my visit to Livermore, CA in the spring of 2002. In spite of our considerable difference in age I

immediately felt very good rapport with his jovial nature. Though I was working with Richard

(and later I learnt it was originally David’s idea) it was Dr. Kalos who first pitched the idea of this

thesis to me. His expansive knowledge of Monte Carlo methods, and extremely lucid explanation

of otherwise difficult or confusing subjects were very helpful for my understanding. Much of what

I know of Monte Carlo today I learned from Dr. Kalos’s book, “Monte Carlo Methods”. Later,

during the preparation of our manuscript, his suggestions not only simplified several key concepts,

but also improved the overall quality of the paper. But aside from the above I would also like to

vi



commend him for discovering “The Iron Works” BBQ shack in Austin, TX where we had many

delightfully interesting conversations.

I also received considerable help in our collaboration with the computational electronics group.

I would like to thank Prof. Jean-Pierre Leburton, Lingxiao Zhang and Dmitriy Melnikov. Prof.

Leburton has been very generous in extending his cooperation and has helped me with many useful

discussions regarding the nature of heterostructure devices. I also learned a lot about semiconduc-

tor electronics from his class. Lingxiao especially had helped me a lot with obtaining data, and

preparation of graphs for presentations. Recently, Dmitriy has also been invaluable in providing

the input data: the device structure, the DFT solutions of potential, charge density and trial wave-

functions. Their insight was also indispensable in discussions on the heterostructure device. Both

Lingxiao and Dmitriy were always available to answer questions or clarify doubts.

I have been very fortunate to be in a group with dear friends like Jordan Vincent, Nick Romero

and Ken Esler. Both Nick and Ken were of great help in providing much needed computer support.

Jordan not only helped with the QMC++ code, but was also a great companion in my two visits

to Livermore, CA. I also had a very successful collaboration with another friend Tsu-Chieh Wei,

much thanks are due to him as well.

This acknowledgment would be incomplete without the mention of the many friends in the

physics class of 1999 who welcomed me to the United States, and made me a part of the class. I

would like to thank Jeff Reifenberger, Jordan Vincent, John Veysey, Ken Esler, Ziggy Majumdar,

Jack Sadleir, Hector Garcia-Martin, Kapil Rajaraman, Dom Ricci, Michelle Nahas and Nick Romero

for all kinds of help and companionship that is too long to narrate. Argyrios Tsolakidis has also

been a great friend, incidentally he also left me his car when he graduated, it has been of immense

use to me.

My parents Debashis and Utpala Das have been pillars of support and encouragement through-

out my life. Their silent backing of all my endeavors have made it possible for me to reach this stage.

Financial limitations have prevented me from visiting home as often as I would have liked, and they

have patiently born my absence for the last several years. I hope in the end it will all be worthwhile.

I would also like to thank my cousin Dolonchampa Basu and her husband ParthaSarathi for their

constant support, encouragement and help.

vii



I would also like to thank the departmental staff for their supporting role, especially Wendy

Wimmer and Dawn Sommers who have been of considerable help regarding various departmental

needs. Lastly, I would like to thank the entire committee for making time to oversee this thesis.

This work was supported by the National Science Foundation under Grants No. DMR99-76550

and DMR-0325939 for the Materials Computation Center at the University of Illinois at Urbana-

Champaign, U.S. Department of Energy under Contract No. DEFG02-91ER45439 for the Fred-

erick Seitz Materials Research Laboratory. For an intermediate period I was also supported by

the National Science Foundation grant DMR01-04399. Much of the computation in this work was

performed on the following computers: University of Illinois at Urbana-Champaign Materials Com-

putation Center IBM RS/6000 cluster and National Center for Supercomputing Applications (2500

dual processor) Tungsten cluster. I would also thank Lawrence Livermore National Laboratories

for making possible my visit to Livermore during the spring and summer of 2002 at which time I

started my collaboration with Dr. Mal Kalos which led to this saga.

viii



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Stochastic Potential Solver . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Brownian Motion and Potential Problem . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Fixed Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Floating Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 The Green’s Function Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Choice of Domain Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Accounting for the Charge Density . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Dielectric Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Fixed Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Floating Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Transition at a Planar Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 A Simple Estimation of the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Potential and Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7.1 Interpolation using Off-centered Domains . . . . . . . . . . . . . . . . . . . . 21
2.7.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Constructing the Maximum Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.9 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 Variational Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Diffusion Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The Green’s function Propagator . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.2 The Branching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Branching with Stochastic Potential . . . . . . . . . . . . . . . . . . . . . . . 40

ix



Chapter 4 QMC-WOS: A Toy Problem . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Polarizability of He by QMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 The Trial Wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Polarizability Results and Analysis of the Penalty Method . . . . . . . . . . . . . . . 48

Chapter 5 Laterally Coupled Quantum Dot . . . . . . . . . . . . . . . . . . . . . 54
5.1 The Device Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 The Density Functional Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 The Quantum Monte Carlo Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 QMC with External Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.2 QMC with Stochastically Obtained Potential . . . . . . . . . . . . . . . . . . 60

5.4 Construction of the Wave Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.1 Singlet and Triplet wave functions . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.2 The Single Particle Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 A Modified Sampling Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.5.1 The Spherical Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.2 Sampling the Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Singlet-Triplet Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Appendix A Sampling Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.1 Probability: definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.2 Methods of Sampling Standard Distributions . . . . . . . . . . . . . . . . . . . . . . 79

A.2.1 Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2.2 Transformation of Random Variables . . . . . . . . . . . . . . . . . . . . . . . 80

A.3 Sampling a Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
A.4 Sampling Uniformly on a Spherical Surface . . . . . . . . . . . . . . . . . . . . . . . 83
A.5 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.6 Variance Reduction: Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . 85
A.7 Sampling a Sum of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.8 Sampling Eq.(5.12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Appendix B The WOS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Appendix C Overture to Spherical Quantum Dots . . . . . . . . . . . . . . . . . . 92

Appendix D Effective Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix E Cubic Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
E.1 Cubic Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
E.2 TriCubic Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
E.3 Wave function and Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Author’s Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

x



List of Tables

4.1 Calculation of polarization of helium with quantum Monte Carlo. The system con-
sists of a helium atom placed between the plates of an infinite capacitor as described
in this section. Two similar calculations were run, one using the stochastic potential
using the WOS algorithm, and the other using a model linear potential. The VMC
results here are obtained by optimizing the trial wave-function. For DMC, we used
a time-step of τ = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 The vertical composition of the heterostructure. . . . . . . . . . . . . . . . . . . . . . 55
5.2 Run time comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



List of Figures

2.1 Fixed Random Walk on a fixed grid two-dimensional discretization of a system. To
evaluate the potential at the point P (x, y) the walk hops to one of the neighbor-
ing points with equal probability. The walk continues until it reaches the external
boundary. See the section above for details. . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A Walk On Spheres: A generic device with metal gates on surface held at arbitrary
voltages. Start by constructing the maximum sphere S0 of radius d0 centered on
P (q). Sample a point r1 uniformly on S0. Repeat the process by constructing
sphere S1 etc. The walk ends when the sampled point r? is within a range δ of
boundary ∂Ω. Such walks will never end exactly on the boundary, but with δ � d0

the estimate can be made arbitrarily accurate. . . . . . . . . . . . . . . . . . . . . . 8
2.3 When the walk reaches a point r? a distance ∆r (∆r ≤ δ, i.e. within the skin region,

exaggerated here for clarity) from the surface, a grid of width ∆r is constructed
with r? as a grid point. The walk continues by sampling a neighboring grid point,
and terminates when it reaches a boundary point. Thus the algorithm performs a
floating random walk in the bulk of the device and a fixed random walk in the skin
region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Reflecting boundary condition with a linear approximation. . . . . . . . . . . . . . . 11
2.5 One sample path for a walk in a device with regions of different dielectric materials. 17
2.6 Boundary hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Sampling the interaction between points q and r inside the domain D0 centered at

r0 is done by means of an off-centered Green’s function. . . . . . . . . . . . . . . . . 21
2.8 WOS in a complicated region divided into Vornoi cells. . . . . . . . . . . . . . . . . . 26
2.9 A comparison of different WOS algorithms to evaluate the potential between the

plates of an infinite capacitor. The circles represent the basic WOS calculation where
each run is started from the point where the potential is sought. The triangles are
the interpolated estimates from runners starting from the center. The line represents
the exact analytic form of the potential. The inset shows a comparison of the errors
from the different schemes. Each estimate involved 103 runners. . . . . . . . . . . . . 28

2.10 As the non-optimal importance function approaches the optimal form, variance is
reduced. For an algorithm using only spherical domains the variance approaches
a limiting value due to the finite size of the skin-depth δ. Discretizing near the
boundary will eliminate this limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 The Branching algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xii



4.1 Least square fit of the polarization data obtained from the WOS calculation of the
helium atom placed between the plates of an infinite capacitor. The result used is
the mixed estimator obtained from the VMC and DMC data presented in Table 4.1.
The data for the model calculation is not shown since it nearly overlaps with the
WOS data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Ground state DMC energy of the helium atom in an electric field of Ez = 0.1 for
different time steps. In parenthesis is the number of runners used per walker for the
WOS calculations. This is compared with the calculation using the model field. . . . 51

4.3 Testing the convergence of the two penalties. The uncorrelated penalty method
using an independent uncorrelated (to the branching) potential estimate converges
much faster than the approach where we modify the estimator. However, for a
large number of runners the second converges to the correct result from above. The
calculation was carried out at τ = 0.25. The difference from the model is due to the
induced charge effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 A schematic diagram of the laterally coupled double quantum dot heterostructure.
The upper section of the figure shows the top surface with the external gates. The
length along the horzontal direction is 1400 nm, with the distance between the L
and R gates being about 500 nm, and that between PL and PR being about 300 nm.
The lateral dimension of the device is 570 nm. . . . . . . . . . . . . . . . . . . . . . . 56

5.2 A schematic diagram of the heterostructure model. The device is represented on a
non uniform rectangular grid which is finer near the quantum dot region, represented
here by the oval. Since the electrons are completely confined within this region the
Schroedinger’s equation is solved within this inner grid. . . . . . . . . . . . . . . . . 58

5.3 A schematic diagram of paths if we do not impose Dirichlet boundary conditions
on the ungated sections of the top surface. Four typical types of path are shown.
Path 1 diffuses through the surface but terminates on a gate where the potential is
specified. Path 2 diffuses far outside the device, and is assumed to terminate on an
artificial grounded surface. Path 3, diffuses outside, but then comes back into the
device and Path 4 is reflected from the surface back into the device. Since typically
ε� 1, most of the paths would be of this type. . . . . . . . . . . . . . . . . . . . . . 61

5.4 The trial functions for the construction of the wave function. Along the x-axis we
use splines to interpolate between data points extracted from the LDA solution.
Along the z-axis, its a combination of the AiryAi function below (to the right of)
the interface and an exponential decay above. . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Schematic plot of the potential along the vertical direction. V0, zI , z0 and Ez are
obtained from the LDA potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 A schematic diagram of the quantum dot heterostructure, and labeling the layers
and interfaces for the WOS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Spherical domain straddling several dielectric layers. The domain is divided into
two types of surfaces, the spherical surface denoted by Σi and the planar-circular
disks denoted by σi. We note that each surface section can be written as follows.
S0 = Σ0r̂ + σ1ẑ, S1 = −σ1ẑ + Σ1r̂ + σ2ẑ, . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



5.8 Comparison of the potential obtained from finite element calculation with that ob-
tained from WOS calculations. Both the basic and the improved algorithm employed
106 walks to estimate the potential, however the improved algorithm was about
seven times faster. This graph is generated for comparison purposes, during the
QMC-WOS calculation the main idea is to avoid the construction of this potential
surface. Also note that though belonging to the same heterostructure, this potential
profile was obtained for a different gate bias configuration than that used for the
singlet-triplet calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9 The singlet-triplet splitting curves with respect to the sweeping voltage i.e. the bias
in the gates PL and PR in Fig.(5.1). The DFT gap goes becomes negative at small
bias, i.e. the singlet higher than triplet. But the DMC result shows that the gap
always remains positive. In blue is the DMC result where the electronic interaction
is taken to be 1/εr. In red is another DMC calculation, where only the electronic
interaction is computed by WOS. The green dots are from a full WOS calculation.
The DFT data was provided by the Computational Electronics Group (CEG) [49]. . 73

5.10 Comparison between the gap in the two interactions, V = 1/εr and Vwos. The
plotted quantity along either axis is the difference of triplet - singlet electronic in-
teraction.The units are in eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1 The rejection technique. ξ1 is accepted and ξ2 is rejected. . . . . . . . . . . . . . . . 79
A.2 The cumulative distribution function. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.1 Process of loading an electron into an otherwise neutral quantum dot . . . . . . . . . 93
C.2 WOS algorithm for the spherical dot . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

E.1 The polynomial basis functions for interpolation. The range [x1, x2] has been mapped
into [0, 1] with the choice of the parameter t. Note the properties of these functions;
p1(t) is 1 at 0 and 0 at 1, conversely for p2(t). As for the qi(t) functions, their
derivative vanishes at one of the ends. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiv



List of Abbreviations

DFT Density Functional Theory

DMC Diffusion Monte Carlo

FEM Finite Element Method

GFMC Green Function Monte Carlo

LCQD Laterally Coupled Quantum Dots

LDA Local Density Approximation

LSDA Local Spin Density Approximation

NBF Nearest Boundary Face

QMC Quantum Monte Carlo

STM Scanning Tunneling Microscope

VMC Variational Monte Carlo

WOS Walk On Spheres

xv



Chapter 1

Introduction

Simulation of an N -particle quantum system is essentially solving the Schrödinger’s equation involv-

ing the 3N -dimensional wave-function which defines the state of the system. Stochastic methods

like quantum Monte Carlo (QMC) are very appropriate, useful and accurate to treat systems of

such large dimensionality [8, 23]. These methods have been applied extensively to study proper-

ties like cohesive energies of molecules [28], solids [21], properties of the electron gas [9, 53], solid

hydrogen [10, 55], clusters [25] and much more.

Recently there has been great interest in studying semiconductor devices operating in highly

quantum regimes, like quantum dot devices [2], quantum wires[58], single electron transistors[40]

etc. For simulation purposes structural details of these devices are usually represented by simple

analytically tractable models[29]. However these models sometimes lead to an inadequate descrip-

tion of the interaction energies[65]. There have been only a limited number of applications of QMC

to realistic models of such physical devices capturing the details of the potential profile [48], and

even this known work has been restricted to making simplifying assumptions on the form of the

potential. The reason is that while simulation of natural or idealized structures involve interactions

with simple analytic forms (like Coulomb, Lennard-Jones etc.), the interaction in artificial devices

is too complicated to be efficiently treated within QMC. Our goal is to extend the application of

QMC to semiconductor devices in a simple and straightforward way.

Among the several QMC methods, we will mainly focus on zero temperature methods like

variational Monte Carlo (VMC) [11] and diffusion Monte Carlo (DMC), since these are the simplest

to code and most extensively used. We should mention here that our approach can also be used in

conjunction with any other kind of quantum or classical Monte Carlo algorithms. The methods we
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are concerned with, i.e. variational and diffusion Monte Carlo both follow the same basic idea, they

calculate expectation of observables associated with a particular state of the system. Consider an

N -particle system, and denote the coordinate of the i-th particle by qi. The simulation generates

a set of M configurations {R}, called “walkers”.

{R} = R1, . . . ,Rm, . . . ,RM . Rm = {q1, . . . , qN} ∀ m,

i.e. each walker is a realization of the system in a particular configuration. The algorithm to generate

{R} depends on the method involved, but it results in the walkers being distributed according to

(or something close to) Ψ2, where Ψ is the relevant state. Accurate estimate of any observable can

then be obtained.

Application of these methods to an entire device structure can be prohibitively expensive.

Progress can be made by isolating the physical region dominated by quantum mechanics from the

background, which can be treated semi-classically. The walkers are created only in the quantum

region and are confined there. The potential profile in this region is thus governed by the compli-

cated inter-particle interactions, the effect of the semi-classical background, induced image charges

and the gate voltages on the surface boundary of the device. The net effect in general is very

complicated.

This potential profile is however the defining characteristic of the system. The QMC algorithms

inevitably involve repeated computation of the potential energy V (Rm) of each walker configuration

Rm during and after their evolution into the final equilibrium distribution. In general, there will

be no analytic expression for V (Rm) except in highly idealized cases, and will have to be obtained

as an explicit solution of Poisson’s equation at every step. This is unfeasible for any grid based

finite element like method.

The only application [48] of QMC to realistic devices that we know of, circumvents this by

approximating the background potential by a self-consistent Poisson-Schrödinger solution using

an LSDA quantum charge density. The walkers move around in this rigid background, and the

particles interact by a simple Coulomb interaction. But strictly speaking, the interaction is not

Coulomb-like, it is modified by the induced charges at dielectric interfaces and metal surfaces. Also

the LSDA approximation itself breaks down for highly correlated systems producing theoretically
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impossible results like predicting phase transitions in finite systems [43, 31]. However, we will show

that QMC can be applied to realistic models of such systems without these approximations, if we

can solve the potential stochastically.

Our stochastic approach has several advantages. Traditional grid based methods expend a lot of

computation in solving the equation at all grid points over the entire device. These grid points are

placed at discrete intervals, and thus limit the resolution of the device structure. This resolution

can be increased only at considerable cost. However, the stochastic method obtains the solution

only at the desired points (for e.g. the walker configuration Rm). Secondly, this does not suffer from

the resolution issues of the grid based methods, any point can be treated with arbitrary accuracy.

Moreover, the stochastic methods can handle regions of very sharp gradients much more effectively

than grid based counterparts.

Furthermore we will demonstrate that the stochastically obtained potential can be easily used

within the QMC framework. We need not solve the potential energy of each walker configuration

with great degree of accuracy, but that the QMC algorithm will eliminate the noise in the potential.

In essence what we are performing is a Monte Carlo (classical potential solver) within another Monte

Carlo (quantum Schrödinger solver).

Monte Carlo methods find wide applicability in diverse areas of numerical research, and this

technique can be adapted in fields outside of atomic scale simulations as well. For example, in

quantitative finance, the stock price is assumed to react to the flow of information coming into the

market, and as a result the return on the stock (the logarithm of the stock price) is assumed to

undergo a Brownian motion. Prices of options and other instruments are often estimated based on

Monte Carlo simulation of the stock price. This estimation however also depends on the interest

rates prevailing in the market, which in complicated models follow a Brownian motion of its own.

Due to the log-normal (logarithm of stock price is distributed normally) nature of the stock move-

ment, the equations are very similar to the branching process of diffusion Monte Carlo, and so our

approach will also be applicable to such financial problems.

This thesis is organized as follows. In chapter 2, we discuss the stochastic method of computing

the potential. Then in chapter 3 we show how this potential is easily incorporated within QMC

calculations. We also illustrate the modifications necessary for DMC to incorporate this stochastic
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potential. In chapter 4 we implement the method in the context of a simple toy problem, namely

placing a helium atom within the plates of an infinite capacitor and measuring the polarizability.

Though the geometry is simple, this problem illustrates most of the important features of the

algorithm. However, we also consider a far more complicated device in chapter 5, where we apply

this method to a realistic model of a semiconductor heterostructure with complicated gate geometry,

and compute and compare the singlet-triplet splitting of a two electron double dot. In chapter 6

we draw conclusions.

The appendices also provide additional information regarding background material and details

of calculations. In appendix A we describe several Monte Carlo sampling techniques, both standard

methods from textbooks and those developed during the course of this work. In appendix B we

lay down the algorithm for the WOS calculations. In appendix C we describe another possible

important application of the method; a spherical double quantum dot. The electronic interaction

between particles near a dielectric sphere is difficult to compute analytically, however this would

not pose any problem for the stochastic method, and hence this can be applied to study spherical

dots between metal plates of device like a scanning tunneling microscope. In appendix D we

provide the scaling of fundamental units to the effective atomic units appropriate for calculations

in semiconductors. The QMC calculations of the realistic heterostructure required input data from

previous density functional calculations, and these we implemented by interpolating data on a grid

using tricubic splines which we describe in appendix E.

4



Chapter 2

Stochastic Potential Solver

The probabilistic potential theory arises from a connection between Brownian motion and classical

potential theory, first made by Kakutani in 1949 [37]. Interestingly, the first use of Monte Carlo

to solve Schrödinger’s equation, by Fermi, Metropolis, Ulam et al was also around the same time

in 1948 [52]. However, Muller [54] was the first to layout a detailed mathematical framework

and algorithm to solve Laplace’s equation, which was later developed by Haji-Sheikh [27] when he

applied this method for non-zero constant heat-source term. Physically heat flow, natural diffusion,

Brownian motion and potential, all follow similar diffusion equations and hence can be solved by

similar stochastic methods. A nice and more detailed introduction can be found in the work of

Bevensee[4] and Port [61].

2.1 Brownian Motion and Potential Problem

Brownian motion gets its name from the corresponding physical process reported on in 1828 by

Robert Brown, an English botanist. He observed that pollen grains suspended in water perform

a continuous swarming motion. Einstein in 1905, unaware of the accumulating experimental data,

derived Brownian motion from statistical mechanical considerations (see works of Einstein [19] and

Nelson for an historical perspective). Slightly earlier in 1900 Bachelier [3] used Brownian motion

to model the fluctuations of prices of such securities as futures and options and to study various

methods of hedging.

The connection between potential theory and Brownian motion comes from the nature of har-

monic functions which are solutions of the Dirichlet problem, i.e. for which the solution is provided
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on the entire boundary. The Dirichlet problem was first solved by Gauss in 1840, but it was Wiener

[71] who first formulated the generalized Dirichlet problem which always has a solution. But neither

made the connection with Brownian motion until Kakutani [37] and Doob [18]. In the intervening

period Courant, Friedrichs, and Lewy [14] noted an indirect connection between the two subjects.

Namely, they noted that the solution to the discrete version of the Dirichlet problem (which con-

verges to the solution of the original problem under appropriate conditions as the grid size tends

to zero) has an interpretation in terms of simple random walk. This leads to the “Fixed Random

Walk”.

2.1.1 Fixed Random Walk

The fixed random walk procedure can be easily understood as a finite difference approximation of

Laplace’s equation. For this purpose we superpose a uniform grid of length ` on a two dimensional

region of interest Ω with boundary ∂Ω as shown in Fig.(2.2). The algorithm can be trivially

extended to three dimensions. Consider Laplace’s’ equation (in 2D),

∇2Φ(x, y) = ∇2
xΦ(x, y) + ∇2

yΦ(x, y) = 0

Using a finite difference approximation for the second derivative, it is readily seen that the potential

at any point Φ(x, y) is simply the average of the potential at the surrounding mesh points.

Φ(x, y) = px+Φ(x+ `, y) + px−
Φ(x− `, y) + py+Φ(x, y + `) + py−Φ(x, y − `) (2.1)

where

px+ = px−
= py+ = py− = 1/4

The two equations can be given a probabilistic interpretation; that is if a random-walking particle

is instantaneously at the point (x.y) it has an equal probability (1/4-th to be precise) of stepping to

any of the neighboring lattice points. The p-s are the associated probabilities for each possibility.

In three dimensions p = 1/6, and so we see that the potential at any point is simply the average

over its neighbors.
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Figure 2.1: Fixed Random Walk on a fixed grid two-dimensional discretization of a system. To
evaluate the potential at the point P (x, y) the walk hops to one of the neighboring points with
equal probability. The walk continues until it reaches the external boundary. See the section above
for details.

2.1.2 Floating Random Walk

A simple extension of the above method is the “Floating Random Walk” where neither the lattice

points nor the the step sizes are fixed and hence the name of the algorithm. This approach can

not only solve the potential at any arbitrary point (not just lattice points), but has the added

advantage of faster convergence. The main idea as before is best illustrated in a charge free system

(Laplace’s equation), the basic idea being same even for the completely general problem as will be

shown later.

We know the solutions of Laplace’s equation are harmonic functions which obey the Mean Value

Theorem [74]

Φ(q) =
1

4πd2

∫

Φ(r′)d2r′ (2.2)

i.e. as we saw for the discrete case, the potential Φ(q) at any point q is the average of the potential

over a sphere or arbitrary radius d centered at q. We assume Dirichlet boundary condition for

now, i.e. the potential is specified on the external surface, as is often the case in practical situations

where the external biases are applied through surface gates. The algorithm can be easily extended
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Figure 2.2: A Walk On Spheres: A generic device with metal gates on surface held at arbitrary
voltages. Start by constructing the maximum sphere S0 of radius d0 centered on P (q). Sample a
point r1 uniformly on S0. Repeat the process by constructing sphere S1 etc. The walk ends when
the sampled point r? is within a range δ of boundary ∂Ω. Such walks will never end exactly on the
boundary, but with δ � d0 the estimate can be made arbitrarily accurate.

for Neumann boundary conditions as in the discrete case. A simple random walk algorithm “Walk

On Spheres” (WOS) due to Muller [54] can solve Eq.(2.2) in a very elegant way.

Consider a region Ω with external boundary ∂Ω where the potential Φapp(r) is specified for r ∈

∂Ω, see Fig.(2.2). To obtain the potential at any point q ∈ Ω, construct the largest possible sphere

S0 centered at q but fully contained within Ω. Such constructions will be called the “maximum

sphere” following Muller. The radius of the sphere is simply the minimum distance from q to the

boundary ∂Ω. The averaging of Eq.(2.2) is carried out by sampling points r1 (and the potential

Φ(r1)) uniformly over the surface of S0. Hence the solution Φ(q), represented by the estimator

〈Φ̃(q)〉 is given by 〈Φ(r1)〉. Here Φ̃(q) is the estimate of an individual sample.

But of course, the potential Φ(r1) is unknown, and thus we need to continue the process giving

rise to a “walk” as illustrated in Fig.(2.2). A maximum sphere is constructed centered about r1,

and a point r2 is sampled on its surface, and the walk continues until the sampled point r? lies on or

very close to (i.e. within some “skin” region of width δ from) the boundary ∂Ω, where the potential

is known; Φ(r? ∈ ∂Ω) = Φapp(r?). This generates a walk q → r1 → r2 · · · r?, see Fig.(2.2). An
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Figure 2.3: When the walk reaches a point r? a distance ∆r (∆r ≤ δ, i.e. within the skin region,
exaggerated here for clarity) from the surface, a grid of width ∆r is constructed with r? as a grid
point. The walk continues by sampling a neighboring grid point, and terminates when it reaches
a boundary point. Thus the algorithm performs a floating random walk in the bulk of the device
and a fixed random walk in the skin region.

average over many such walks will provide an estimate of the potential at q, the starting point.

Hence, 〈Φ̃(q)〉 = 〈Φapp(r?)〉.

Thus, for N such walks the mean of the estimate is

〈Φ̃(q)〉 = lim
N→∞

1

N
N
∑

n=1

Φapp(r
?
n),

with an error of

δΦ̃(q) = lim
N→∞

1

N − 1

[

1

N
N
∑

n=1

Φ2
app(r?

n) − 〈φ̃(q)〉2
]

.

2.2 Boundary conditions

In the actual application of the random walk algorithms care should be taken of the possibly

time consuming progress of the walk when it is near an external surface. When the random walk

approaches an external surface, the radius dk of the sphere defining the locus of the next step
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becomes correspondingly small and hence convergence to the boundary is slowed down. Moreover,

the spherical surface intersects a planar external boundary in exactly one point, and hence the

probability of sampling a surface point is exactly zero. This is why the discussion in the previous

section was simplified by terminating the walk when it reached a skin region of width δ near the

external boundary.

That the WOS indeed converges to an external boundary with probability one has been shown

in the mathematical works of Kakutani [37] and Muller [54]. Taking this for granted we can employ

several approximate representations of the boundary for the Dirichlet problem, i.e. for the case

where the external surface is at a known boundary potential Φapp(r) with r ∈ ∂Ω. This is the

case when for example a bias is applied to a device by means of metal gates on the surface. The

metals are equipotentials controlled by the connected (and known) voltage sources. Haji-Sheikh

[27] discusses some of the following choices:

(a) As described earlier terminate the walk when it is within a skin depth δ of the external surface

and sample potential at the nearest boundary point.

(b) If at any step the walk moves to an angular position that deviates less than a preassigned

quantity ±θmin from the position where the sphere intersects the external surface, the walk

is terminated. This is similar to the above condition.

(c) When the walk reaches the skin region, a fixed random walk is employed to establish proba-

bilities for the next step of the walk, Fig(2.3). For some problems it might be convenient to

employ a one-dimensional form along the direction normal to the surface.

Thus when the walks reach a boundary with a specified potential, they are terminated. Such

boundaries are called absorbing barriers. Next, consider the situation when the boundaries have

specified Neumann boundary condition, i.e. the electric field is specified on the boundary rather

than the potential itself. From Fig.(2.4),

Φ0 ≈ Φ− − Ex∆x

The probabilistic interpretation is to reflect the walk by the same distance ∆r that the walk is
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away from the surface and accumulate the quantity −E∆r. Such boundaries are called reflecting

barriers.

PSfrag replacements

Φ−

Φ0

Ex
∆x∆x

Linear
Approximation

Figure 2.4: Reflecting boundary condition with a linear approximation.

There can also be convective boundary condition which is equivalent to a partial absorbing,

partial reflecting barrier. More elaborate discussions can be found in the referenced literature.

2.3 The Green’s Function Approach

Much insight into the above method can be obtained from a full mathematical treatment of the

general problem, namely the Poisson’s equation

∇2Φ(r) = −ρ(r)/ε (2.3)

where ρ(r) is the charge density and ε is the dielectric constant of the medium. Keeping in mind the

discrete nature of walker configurations in quantum Monte Carlo we are interested in the potential

at a point r due to another point charge at r ′, given everything else in the problem. This is

embodied in the idea of the Green’s function, defined as

∇′2 G(r, r′) = −δ(r − r′) r, r′ ∈ Ω

G(r, r′) = 0, r′ ∈ ∂Ω (2.4)

where Ω is any volume within the region, and ∂Ω is the surface of that volume. Without loss

of generality let’s denote by Ω the entire system volume. The second equation in Eqs.(2.4) is a
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consequence of Dirichlet boundary condition. In terms of this Green’s function, the potential Φ(r)

at any point r is given by [33](pp 44, Eq.(1.44)),

Φ(r) =

∫

Ω
ρ(r′)G(r, r′)d3r′ +

∫

∂Ω
d2r′ · ∇G(r, r′)Φ(r′) (2.5)

i.e. the potential has contributions from both the volume charges (like doped charges, or electron

density) and the boundary potential (like voltages applied to metal gates on the surface). also we

need to know the potential Φ(r′) on the surface. Thus the Green’s function plays a crucial role in

the inter-particle interactions. We stress again that Eq.(2.5) holds for any volume Ω not just the

entire volume as we have used here.

As we will show, a method called the domain Green’s function Monte Carlo (dGFMC) [38], orig-

inally developed to solve Schrödinger’s equation evaluates both integrals in Eq.(2.5) simultaneously.

This is not surprising given the connection between diffusion (like imaginary time Schrödinger’s

equation), Brownian motion and potential theory. The key idea is to realize that Eq.(2.5) holds for

any domain D of any arbitrary shape which is not necessarily the entire system volume Ω. This

will require a redefinition of the Green’s function GD(r, r′) to be defined only within the domain

D with surface ∂D. Thus,

∇′2 GD(r, r′) = −δ(r − r′) r, r′ ∈ D

GD(r, r′) = 0, r′ ∈ ∂D (2.6)

Since the choice of the domain D is arbitrary, we should choose it such that GD(r, r′) has a known

analytic form and is inexpensive to compute. In terms of this domain Green’s function, the potential

in Eq.(2.5) becomes

Φ(r) =

∫

D

ρ(r′)GD(r, r′)d3r′ +

∫

∂D

d2r′ · ∇GD(r, r′)Φ(r′) (2.7)

The first integral is known exactly, and the second integral is very similar to that in Eq.(2.2); in

fact if the gradient term is constant, then they are identical up to a constant factor. Hence the

same WOS algorithm can evaluate this term, provided we generalize it to any arbitrary domain D
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and sample its surface ∂D not uniformly but according to ∇GD(r, r′). We have thus generalized

WOS to a “Walk On Domains” D0,D1, . . . instead of spheres. The iterative nature of Eq.(2.7) is

inherent in the WOS algorithm. Accumulating contributions of GD(rk, rk+1) from each domain

Dk along the walk and averaging over several such walks will provide an estimate of Φ(r). There

is more to say about evaluating the first integral and we will devote a subsection to it. Discussion

of dielectric boundaries will also be deferred to a separate section.

Thus the “‘Walk On Spheres/Domains” is a general algorithm to solve the potential problem.

For completeness we should also mention that the Green’s function for the entire system defined

over Ω is given by

G(r, r′) = GD(r, r′) +

∫

D

d2r′′ · ∇GD(r, r′′)G(r′′, r′) (2.8)

and our walk is implicitly constructing this exact Green’s function for the problem.

2.3.1 Choice of Domain Shape

Though theoretically the domain shape can be arbitrary, in practice it is wise to choose a shape for

which GD(r, r′) is known and inexpensive to compute, and ∇GD(r, r′) is also easy and inexpensive

to sample. If we restrict ourselves to spherical domains, the Green’s function has a particularly

simple form. For a sphere of radius d centered at r,

GD(r, r′) =
1

4πε

(

1

|r′ − r| −
1

d

)

. (2.9)

and d2r′ · ∇GD(r, r′) = d2r, i.e. the domain surface should be sampled uniformly, exactly as in

WOS. Also we see that this captures the 1/r Coulomb interaction directly, but adds the corrections

due to the boundary conditions. The problems regarding spherical domains have already been

addressed. There are mainly the issues of slow convergence and dealing with planar boundaries.

We could have chosen some other shapes like cubes or rectangular parallelepipeds. This would

have allowed us to sample planar surfaces exactly, and the walks would terminate much faster than

that with the choice of spherical domains. Liu et al [46] have described a method of sampling

the Green’s function and its gradient for rectangular domains. The main idea is that the Green’s

function is expressed as a time integral over known one-dimensional Green’s functions. Though the
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one dimensional Green’s functions are in the form of infinite sums, the authors show that we need

to consider only a few terms. Nevertheless, the computation involved is not as simple as with the

spherical domains.

The considerations for choosing one domain shape over the other are as follows. For any

arbitrary geometry, using rectangular domains would not be advantageous since in general there

will not be any considerable overlap of the domain surface and the external non-planar boundaries.

In the completely general case therefore the spherical domains are an ideal choice. Moreover the

calculations and sampling for the spherical domains are much simpler to understand and implement

on a computer. If however the device has planar surfaces then walks employing rectangular domains

will converge very rapidly. The main advantage of using spherical domains, as will be shown in

section 2.6, is that the Green’s function is a straightforward correction to the 1/r Coulombic

interaction. This allows us to take care of the image terms like G(r, r) in a straightforward way;

implementing this for any other domain shape will in general be very complicated.

2.3.2 Accounting for the Charge Density

The fixed random walk can easily take care of the charge density by accumulating contributions from

each sampled grid point, as shown in section 2.1.1. To incorporate this into the WOS algorithm,

we look back to Eq.(2.7) and discuss means of evaluating the first integral. Keeping in mind the

nature of systems we will be dealing with, we note that there will be mainly two types of charge

densities in the system, the QMC walker charge density and the density of the semi-classical charge

distribution due to processes like doping.

Let us assume that each QMC walker Rm consists of N particles where the j-th particle has

cöordinates qj and charge Qj. The walker charge density is simply given by

ρwalker(r) =

N
∑

j=1

Qjδ(r − qj).

The volume integral in Eq.(2.7) becomes

∫

D

ρ(r′)GD(r, r′)d3r′ =

j=N
∑

j=1

Qj

∫

D

δ(r′ − qj)GD(r, r′)d3r′ =

N
∑

j=1

QjGD(r, qj)
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which is simply the sum of the domain Green’s functions which we already know how to compute.

If the charge distribution ρ(r) is a continuous function, then the algorithm becomes slightly

more involved. Sampling a point s within the domain according to GD(r, r′) and accumulating

the charge density ρ(s) should give us an estimate of the integral. DeLaurentis [17] suggests the

following approach.

Let us define d(r) to be the minimum distance to the boundary ∂Ω from the point r, i.e. the

radius of the maximum sphere. In order to sample according to the Green’s function GD(r, r′)

given by Eq.(2.9) we need to compute the normalized probability density,

ω(r, r′) =
GD(r, r′)

∫ d
0 d

3rGD(r, r′)
=

6

d2
GD(r, r′)

and the density in spherical cöordinates centered at r and with r = |r − r ′| is

ω(r)drdθdφ =

[

1

4π

6

d2

(

1

r
− 1

d

)

r2 sin θ

]

drdθdφ (2.10)

where we have taken ε = 1 for convenience, it is just a scaling factor and not germane to the

problem at hand. So we sample a point s (|s| ≤ d), i.e. within the spherical domain according to

this distribution; Appendix A shows the mathematical details of how this is done. Once we have

sampled this point, then Eq.(2.7) for each domain of the walk becomes

Φ̃(r) =
N
∑

j=1

QjGD(r, qj) +
d2

6
ρ(s) +

∫

∂D

d2r′ · ∇G(r, r′)Φ(r′)

So the algorithm is to get domain contributions of each particle of the walker, i.e. the individual

domain Green’s functions for the first sum in the above equation, then sample a point s and get

the charge density contribution from there, and lastly to sample a point on the surface, construct

the maximum sphere and repeat the process until the walk ends near the boundary.

2.4 Dielectric Boundaries

In the previous sections we assumed the dielectric constant ε to be homogeneous throughout the

system. This allows us to choose a unit system in which we could set ε = 1. After all, it is
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nothing but a scaling factor. However when the dielectric function is inhomogeneous and is position

dependent, i.e. ε ≡ ε(r) the algorithm becomes more complicated. In the completely general case

where the dielectric function varies widely over the entire region, the fixed random walk can be

modified to handle this case.

2.4.1 Fixed Random Walk

Consider Fig.(2.1), a two dimensional discretization of a device, but now consider that the dielectric

function is continuously varying throughout the device ε ≡ ε(r). In this case the finite difference

representation of the Poisson’s equation yields

Φ(x, y) =
1

4

`2

ε(x, y)
ρ(x, y) +

1

4

∑

i

εi
ε(x, y)

Φi

A three dimensional discretization would replace the factor of 4 by 6. So in this case, instead of

simply averaging over all the neighbors, we have to weight each neighbor according to the value of

the dielectric function at that point. Hence, the probabilities of the walk are not equal, but

pi = εi/
∑

i

εi (2.11)

where i is one of the neighboring points.

However most systems or devices do not have such a strong position dependence of the dielectric

function, they are usually made of different materials, and the dielectric function is assumed to be

constant throughout the material. Hence we do not need a method as general as described above,

we can treat each material with uniform dielectric just as we described in the previous section,

and the walk needs to be modified only at the interface of different materials to take care of the

boundary conditions.

2.4.2 Floating Random Walk

The floating random walk can be easily adjusted to handle systems with piecewise constant dielectric

function. The algorithm was first described by Royer [66], though several other authors [63, 36]

have developed clever tricks to improve efficiency. Later, we develop our own algorithm to improve
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Figure 2.5: One sample path for a walk in a device with regions of different dielectric materials.

the efficiency of potential calculation in typical heterostructure device geometries.

Let the position at some point of the random walk be at the point rk−2, and the next position

being rk−1 lying on the surface of the the spherical domain Dk−2. Both the radius of the domain

dk−2 and the way in which the position rk−1 is generated depend on the location of rk−2. When

rk−2 is not on a dielectric boundary, rk−1 is sampled randomly and uniformly on Dk−2. If however

the sampled point rk−1 crosses the dielectric boundary Bε, as in Fig.(2.5), it is relocated to rk

which is the intersection of the boundary Bε and the straight line connecting rk−2 and rk−1.

The next domain Dk is constructed as follows:

1. First, rk is located on a dielectric boundary. If this boundary is a plane (as in most het-

erostructure devices), dk the domain radius is made equal to the shortest distance between rk

and the following surfaces: a) the external boundary ∂Ω, b) dielectric interfaces other than

the one rk is located. When the dielectric interface on which rk is located is curved as in

Fig.(2.5), then dk = δ. If δ is small compared to the radius of curvature of the interfaces, this

procedure ensures that the interface is essentially planar inside the domain Dk. This will be

shown to be a necessary condition in section 2.4.3.

2. When the point is in between the skin region of the external boundary ∂Ω then dk is set equal

to the skin width δ.

3. When rk is located within Ω but not in the regions mentioned in 1. or 2. above, dk is made
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equal to the shortest distance between rk and the external boundary ∂Ω or interfaces Bε.

2.4.3 Transition at a Planar Interface

Once this domain Dk is constructed, centered on a point lying on the interface we need to sample

a point rk+1 on its surface. Note that this domain is such that half the domain is in one dielectric

medium, and the other half in another. Let us refer to these dielectric constants as ε1 and ε2

according to Fig.(2.5 b), i.e. the domain Dk is divided between Dε1 and Dε2 as in Fig.(2.4.3).

PSfrag replacements dk

Dε1

Dε2

ε1

ε2

rk

Figure 2.6: Boundary hopping

If the dielectric function was constant throughout the domain, the potential at rk is a simple

average over the spherical domain surface. However for the planar interface as described above, it

will be shown in section 5.5 that the potential is given not by a simple but a weighted average,

Φ(rk) =
ε1

ε1 + ε2

[

1

2πd2
k

∫

∂Dε1

d2r · n̂Φ(r)

]

+
ε2

ε1 + ε2

[

1

2πd2
k

∫

∂Dε2

d2r · n̂Φ(r)

]

(2.12)

thus with probability pi = εi/
∑

pi, we sample the surface ∂Dεi uniformly. This is the continuous

version of Eq.(2.11). Hence, in this situation, we generate a uniform random number ξ ∈ (0, 1]. If

ξ ≤ p1, we sample ∂Dε1 uniformly, otherwise we sample ∂Dε1 . So there is a finite probability of

passing through to the other dielectric medium. After this the walk continues as before.

The efficiency of the method is dependent on the number of steps taken by the walk to reach the

external boundary ∂Ω. With several dielectric interfaces, and the requirements mentioned above,

the number of steps in each walk is extended considerably, and the above method though elegant

is not very efficient. We will improve the efficiency of the algorithm in a later section for a specific
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class of geometries.

2.5 A Simple Estimation of the Error

So far we have discussed only the algorithm to estimate the potential at a point. Now we turn to

another important issue of calculating a theoretical estimate for the error in such a calculation. If

the walk is repeated an infinite number of times, then the estimate should be exact, however we

are limited only to a finite number of such walks and this introduces an error in our estimate.

Instead of the completely general problem, we will discuss a very specific example. Consider

the external boundary ∂Ω to be made of only two sections ∂Ω1 and ∂Ω2, with boundary potentials

of V and 0 respectively. We generate n walks from r0 the point of interest.

The probability that of these n walks, m hit the ∂Ω1 surface is given by the binomial frequency

function

B(m) =
n!

m!(n−m)!
pm
1 p

(n−m)
2

where pi ≡ pi(r0, ∂Ωi) is the probability that a walk starting from r0 would end on the ∂Ωi surface.

In the limit of large n and n−m this distribution can be approximated by the normal distribution

B(m) ' f(m) =
1√

2πσ2
exp

[

−1

2

(

m− µ

σ

)2
]

where mean µ = np1 and variance σ2 = npip2. Since the probabilities pi-s are in general unknown,

the variance is estimated from σ ' sm =
√
np1cp2c, where p1c = m/n and p2c = 1−m/n. Replacing

σ by the estimate sm and multiplying m, µ and sm by V/n we get

f(Vr(r0)) '
1

√

2πs2m
exp

[

−1

2

(

Vr(r0) − Ve(r0)

sv

)2
]

where sv is given by

sv =

[

Vc(r0)(V − Vc(r0))

n

]1/2

and Ve(r0) is the expected value, Vc(r0) is the computed value and Vr is the random computed
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value of the potential at r0. Now we can easily estimate bounds, for example

−1.96sv < Vr(r0) − Ve(r0) < +1.96sv ,

Also note that sv varies as 1/
√
n.

2.6 Potential and Potential Energy

The total potential energy of the configuration is

V (Rm) =

N
∑

i=1

Qi



ΦGate(qi) +
1

2

∑

j 6=i

QjG(qi, qj)





+

N
∑

i=1

Vself(qi), {qi} ∈ Rm.

(2.13)

Vself(qi) is the effect of the charges induced in the environment by the particle at qi itself. This

effect manifests itself in the Green’s function for the particle G(qi, qi) which is of course divergent

due to the inherent Coulomb divergence of any charged particle. So,

Vself(qi) =
Q2

i

2
lim

r→qi

[

G(r, qi) −
1

4πε

1

|r − qi|

]

.

For the spherical domain, this simplifies beautifully; the 1/r divergence in the spherical domain

Green’s function Eq.(2.9) cancels with that in the self term above leaving a contribution of −Q2
i /(2d0)

from the first domain. The remainder is the contribution from each subsequent domain along the

same walk. This simplification is one of the major reasons for preferring the spherically shaped

domains over other shapes.

2.7 Improving Efficiency

Convergence properties of the WOS algorithm have been extensively studied by Muller [54] and de

Laurentis [17]. For an N -particle system, each walk takes on average n = O(| log δ|) (see Fig.(2.2))

steps to converge. A separate walk has to be started from each particle at qi ∀i in the sum of
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Eq.(2.13). An N -fold efficiency can be gained if the same walk can estimate the potential at points

in the neighborhood of the origin of the walk. If the walkers {R} are all confined within a small

region, then an algorithm by Pickles [60] to calculate electric fields, can be adapted for this purpose.

2.7.1 Interpolation using Off-centered Domains

In the previous section we generalized the Mean Value Theorem Eq.(2.2) (for spherical domains),

to domains of arbitrary shapes by means of

Φ(q) =

∫

∂D

d3r′ · ∇GD(q, r′)Φ(r′).

For the sphere centered on the point q with GD given by Eq.(2.9), this reduces to Eq.(2.2) which is

uniform sampling over the domain surface. However, we could as well use an “off-centered” Green’s

function which would account for the potential not just at the domain center but at neighboring

points as well. The basic idea is that the evaluation of the potential at some point r0 involves
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Figure 2.7: Sampling the interaction between points q and r inside the domain D0 centered at r0

is done by means of an off-centered Green’s function.

integration of a Green’s function G(r0, r) over the second coördinate r which is any point in the

integration volume D. When the domain D is a sphere centered at r0, the Green’s function simplifies

Gr0(r0, r) ≡ Gr0(|r0 − r|) as in Eq.(2.9). The subscript r0 indicated the domain center. However

to evaluate the potential at some other point q using the same domain we need the Green’s function

Gr0(q, r), with the spherical domain D still centered on r0, and not q. This approach will enable

the simultaneous evaluation of the potential at several points {qi} using walks starting with the

same domain centered at r0.

So for a sphere of radius d and centered at r0, we need GD,r0(q, r) between any two points q
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and r inside the sphere. This is easily obtained from the method of images [34],

GD,r0(q, r) =
1

4πε

[

1

|q − r| −
d

|r − r0||q − (d/r)2r|

]

.

So now the integral over the surface of the first domain involves the gradient of this Green’s function

Fig.(2.7)) and is no longer a constant as was the case before. A constant gradient implied a uniform

sampling over the spherical surface, but even now we could sample the surface uniformly if the walk

is weighted by a factor of wi = ∇GD,r0
(qi, r1) = d(d2 − q2i )/|qi − r1|3 for each particle at qi.

So the modification needed to WOS is very simple. The first sphere is centered at some common

point, say the centroid of the walker configuration. The point r1 is sampled uniformly on the

domain surface, and the weight wi ≡ w(qi, r1) is computed for each particle. From then on, the

walk continues using centered spheres of Eq.(2.9). The potential Φ(qi) sampled from this walk is

obtained by weighting the walk by the prerecorded w(qi, r1)s. Thus the contribution of the applied

potential, i.e. the QiΦ(qi) part of Eq.(2.13) becomes

1

N
N
∑

n=1

Qiw(qi, r
(n)
1 )Φapp(r?

n).

However, if the particle position qi happens to be far from the domain center r0, i.e. near the

surface of the first domain, then the estimate of Φ(qi) is dominated by only a few walks with large

weights and the noise in the estimate is magnified. A good rule of thumb is to choose the first

sphere of radius d0 such that |qi − r0| ≤ d0/2, ∀i.

This method can be directly used for a fast and efficient estimation. Suppose we perform an

initial calculation to generate N runs, where the n-th run samples the point r
(n)
1 on the surface

of the first domain, and the run ends on the device boundary at a point r?
n. If we tabulate this

information {r(n)
1 ,Φapp(r?

n)} ∀ n = 1, . . . ,N , then at any later time we can obtain a quick estimate

of the potential at any point qi by simply evaluating

Φ̃(qi) =
1

N ′

N ′

∑

n

w(qi, r
n
1 )Φapp(r?

n), (N ′ ≤ N )

without the need for any more time consuming walks. The accuracy will of course depend on N ′.
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Generating all our estimates from the same finite set of data can lead to undesired correlations,

which can be reduced by simply limiting the number of estimates according to the size of the data

used. A good rule of thumb is to obtain no more than N separate estimates (for e.g. Φ̃(qi), i =

1, . . . ,N ) from a data of size N .

Many further improvements are possible. As will be shown below, this approach (of using off-

centered domains) can be slightly modified to be used as one of many variance reduction techniques

which can be easily incorporated within the WOS scheme. However the effectiveness of each

technique will depend on the system or rather on the various competing contributions to the

potential. Here we present a general overview of some of these strategies. In section 2.9, we will

discuss these approaches in light of a simple application. The contributions to the potential come

mainly from the effect of the applied boundary voltages and interaction between the volume charges.

The choice of noise reduction method will depend on which of these contributions dominate.

Consider for example, the approach described above of obtaining the potential at points neigh-

boring the walk-origin. This can be used to reduce the variance in the contribution of the applied

boundary potentials. Suppose we know the potential Φ(rc) exactly at some point rc in the first

domain (it could be the origin of the walk). Also assume that the error associated with a sampled

potential 〈Φ̃〉 is ε, i.e. if we perform a calculation 〈Φ̃(qi)〉 with the walk starting at the point qi in the

neighborhood of rc, then the error is approximately ε. On the other hand, if we employ the technique

using the off-centered spherical domains, and simply calculate the difference ∆Φic = 〈Φ̃(qi)−Φ̃(rc)〉,

using the weight wic = w(qi)−w(rc), the error is approximately εoc = 〈w(qi)−w(rc)〉ε. For points

qi in the vicinity of rc, this weight 〈wic〉 is much smaller than unity and hence εoc � ε. This is

simply a form of correlated sampling. Then we can easily obtain Φ(qi) = Φ(rc) + ∆Φic.

Other standard variance reduction techniques may also be considered. Antithetic variates can

be easily implemented by constructing pairs of walks; the walks in each pair will sample opposite

points on the surface of the first domain. However, the drawback of the method is that this can be

constructed only for the first domain, beyond this the walks will proceed independently. We find

this to yield only a marginal improvement even when the potential profile is antisymmetric about

the origin of the walk. In general this method will not be very effective for arbitrary potential

profiles.
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2.7.2 Importance Sampling

Importance sampling is another technique that can be considered when we have some a priori

knowledge of the potential profile; we can preferentially sample the important regions of the device

and this will reduce variance. The form of the importance function will depend on the device

geometry and we will discuss a specific example in section 2.9. For now, we will simply demonstrate

a zero variance principle, i.e. if we know the potential exactly, then the potential itself is the optimal

importance function and WOS can recover the potential without any noise in the estimate. This

by itself is an uninteresting result but the what is important to note (and will be demonstrated

later) that the variance can be reduced arbitrarily if even an approximate importance function can

be arbitrarily improved to approach the optimal form.

The WOS integral is of the form

Φ(r) =

∫

∇GD(r, r′)Φ(r′)d2r′

For the spherical domain, a choice of importance function I(r) leads to

Φ(r) =

∫

Φ(r′)

NI(r′)/I(r)

[

N
I(r′)

I(r)

sin θdθ

2

dφ

2π

]

,

we sample according to the term within the square brackets, and carry a weight I(r)/NI(r ′) for

each domain. Here N is the normalization, and r is the center of the domain while r ′ is the next

point in the walk sampled on the surface of that domain. As the walk proceeds r0 → r1 . . . rm, the

accumulated weight becomes

1

Nm−1

I(r0)

I(r1)

I(r1)

I(r2)
. . .

I(rk)

I(rk+1)
. . .

I(rm−1)

I(rm)
=

1

Nm−1

I(r0)

I(rm)
,

the walk reaches the boundary at rm and picks up the potential Φ(rm), the accumulated term from

the walk is I(r0)Φ(rm)/Nm−1I(rm). If the importance function is chosen such that I(r) = Φ(r),

then it is seen from the Mean Value Theorem Eq.(2.2) that the importance function is normalized

i.e. N = 1, and the accumulated contribution from each walker is Φ(r0) leading to zero variance. If

the importance function is not optimal, then the normalization needs to be carried along and the
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zero variance principle doesn’t hold any more.

2.8 Constructing the Maximum Sphere

A practical computational scheme for the WOS algorithm must provide some explicit means of

constructing the random walks. A major difficulty arises in construction of the “maximum spheres”,

i.e. the determination of the domain radius which is also the step length |rk − rk+1| of the walk.

Theoretically this could be of any length. The domain does not necessarily need to be the maximum

sphere, but the algorithm is most efficient when it is. Geometrically this reduces to the minimum

distance from the domain center to the external surface ∂Ω also called the nearest boundary face

(NBF). This estimation could become very expensive for arbitrarily complicated geometries. We

could make a compromise by choosing a small step length which may not be the exact minimum

distance to the external surface, but is guaranteed to limit the walk within the device. This might

save time in computing the step length but would slow convergence. As the walk nears an external

surface, the minimum distance to the boundary is dominated by that surface alone, and we could

simply calculate this one number. But keeping track of when this happens could become tricky.

In most of our calculations we have treated rectangular heterostructure devices where determining

this distance has reduced to finding the minimum of six numbers, i.e. the distances from a point

to the six surface planes. However in this section we discuss more general and powerful methods

of dealing with geometries of far greater complexities.

We follow here the strategy discussed by Suresh et al [32]. Consider the region shown in

Fig.(2.8), where the external boundary ∂Ω is a set of eight surfaces {A,B, . . . ,G}. Determination

of the potential at point P takes place by starting random walks from the point P of which

two sample paths are shown. This statistical clustering is an inherent characteristic of the WOS

sampling algorithm, and implies that in most trials only a small subset of the external surface ∂Ω

will play a role in determining the NBF; one such subset is highlighted in the first figure of Fig.(2.8).

Thus the minimum search of all the eight faces of ∂Ω is wasteful. Suresh et al suggests the division

of the region into quasi-disjoint regions called Vornoi cells, each of which is associated with one or

more faces of ∂Ω. For example, the Cell A is associated with all points in Ω for which the nearest

face is face A. Such a cell can be determined for example (as in this case) by constructing the
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Figure 2.8: WOS in a complicated region divided into Vornoi cells.

bisectors between face A and various faces “close” to face A, thus marking off a region in Ω.

Consider the point P that lies in the Vornoi cell of A. By definition, it follows that the NBF of

point P is face A. Now consider the first domain centered at P . This sphere intersects only a small

number of Vornoi cells, and large portion of its surface must typically lie in the Vornoi cell of A.

Thus the NBF of the point on the surface of the sphere at P is either face A with large probability,

or one of those faces whose Vornoi cells are “adjacent” to the Vornoi cell of A.

Suresh et al continues this idea in the construction of “maximal graphs”, which is a map of

each cell onto all other cells that might be connected to it. For this consider Fig.(2.8). A domain

at P1 in A, connects A to G and F, and similarly one at P2 also in A, connects it to B,D,E, and F.

Thus by the construction of the maximal graph we can eliminate consideration of the C cell when

the point is located in cell A, i.e. if a point belongs to cell A, it can not reach cell C in the next

step. For details of the construction of Vornoi graphs consult the reference [32].

Construction of such graphs could also become expensive. Pickles [60] suggests construction of

simple geometric rules to maintain a list of “relevant” boundary faces which are built from a library

of simple standard shapes (like planes, spheres, cylinders etc.). With these simple standard shapes

the distances d(r, ∂Ωi) between any point r and the individual surface ∂Ωi are piecewise analytic

functions which are easy to evaluate. For a given rk the minimum distance is governed by simple
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geometrical constraints

d(rk, ∂Ωi) ≥ d(rk−1, ∂Ωi) − |rk − rk−1|

d(rk, ∂Ω) ≤ d(rk−1, ∂Ω) + |rk − rk−1|

d(rk, ∂Ω) ≤ d(rk, ∂Ωi)

and avoids the evaluation of every distance d(rk, ∂Ωi∀i at every step of the walk rk. More mathe-

matically abstract but rigorous techniques can be found in the references of the cited articles, but

we do not discuss them further.

2.9 Numerical Example

We demonstrate the techniques discussed in this chapter in the context of a simple problem, to

calculate the potential profile within the plates of an infinite capacitor and compare it with the

analytic solution which is simply a linear function.

The vertical plates of the capacitor are at a distance zL = ±1, and the plates are at an applied

voltage of Φapp = ±1 in arbitrary units. The calculations are compared in Fig.(2.9). The circles

represent the calculations of the basic WOS, where the potential at any point P (r) is obtained

by generating runs starting from that point. Since all the runs are computationally similar, the

corresponding errors are also similar, as seen from the large plateau in the inset. As we approach

either side of the z-axis, i.e. near the plates of the capacitor, the errors are reduced considerably

since the relative proximity of one plate increases its influence, hence reducing the variance. This

is seen from the plateau falling off near the sides.

The triangles are estimates from runs all of which originate from the same point (z0 = 0), and

use the interpolation scheme described in section 2.7. Near the center this approach does just as

well as the basic approach, as seen from the two curves in the inset coinciding. But further out near

the plates the interpolation becomes worse as discussed earlier, since the entire estimate becomes

dominated by only a few walks. The point is that while the basic WOS employed 103 runners for

each of the 20 points in the plot, the interpolated method used 103 runners for the entire plot,

hence it was about 20 times faster. In the calculations for the helium atom we expect even the
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Figure 2.9: A comparison of different WOS algorithms to evaluate the potential between the plates
of an infinite capacitor. The circles represent the basic WOS calculation where each run is started
from the point where the potential is sought. The triangles are the interpolated estimates from
runners starting from the center. The line represents the exact analytic form of the potential. The
inset shows a comparison of the errors from the different schemes. Each estimate involved 103

runners.

polarized atom to remain well confined in the central region, and hence this approach will be three

times faster (total number of particles being three) than the basic method.

We see a systematic error in the problem. Towards the edges the error in the calculations is

large, but also the deviation from the theoretical value is not symmetric about the origin. This

can be understood from the following argument. Even for a pair of points placed symmetrically

about the origin, the symmetry is broken as soon as we sample r1, a point on the first domain

surface. However uniform sampling over the sphere eliminates this bias for points close to the

center. However for points far from the center the estimate is dominated by a few weights and

hence the bias is not removed. Also note that since all the points are calculated using the same set

of runs, these values and their error-bars are correlated. This is why we do not use this method to

compute potential at points far from the center.
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We also implemented the other methods mentioned earlier, namely that of using antithetic

variates and that of using a reference value with the correlated sampling. As expected antithetic

variates did not show significant improvement. Also as expected, the use of correlated sampling

using the reference value was greatly effective in speeding up the calculation about three times (the

number of particles). This also holds considerable promise for more complicated geometries.

2.9.1 Importance Sampling

Importance sampling can be illustrated for this example of an infinite capacitor. As shown in section

, the optimal importance function is the potential itself. Since the external potential in a capacitor

is simply Φ(r) = z, this can be implemented to illustrate the construction of such functions. This

can also be derived more graphically, by noting that what we want is an importance function that

leads to sampling regions of the spheres preferentially in the z direction so that the walks are

directed towards the capacitor plates and hence end quickly.

The actual algorithm employing this importance function is simple to describe. Consider the

k-th domain Dk centered at rk(xk, yk, zk) and radius dk, and rk+1 is the next point in the walk

sampled on ∂Dk the domain surface. So the optimal importance function is

I(rk+1)

I(rk)
=

Φ(rk+1)

Φ(rk)
=
zk+1

zk
= 1 +

dk

zk
cos θk+1

where θk+1 is the angle between the z = 0 plane and the line joining rk and rk+1. The sampling

just depends on the cöordinate of the point we are about to sample rk+1, the cöordinates of the

present point rk are already known. Note that the optimal importance function weighted kernel is

normalized.

We implement this algorithm on the computer and obtain zero variance as expected. One point

to note is that the variance is limited to a small non-zero number due to the finiteness of the skin

depth δ which can be made arbitrarily small. A better approach is simply to switch the shape of

the domain near the boundary, or easier still, to discretize the region near the boundary into a

grid, and a discrete equivalent of WOS will exactly converge on the boundary and hence yield a

zero variance.

Next we consider a small perturbation to the optimal importance function, I(z) = z + εz 2,
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Figure 2.10: As the non-optimal importance function approaches the optimal form, variance is
reduced. For an algorithm using only spherical domains the variance approaches a limiting value
due to the finite size of the skin-depth δ. Discretizing near the boundary will eliminate this limit.
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(ε� 1)i.e. we mix in a small quadratic term.

I(rk+1)

I(rk)
=
zk+1 + εz2

k+1

zk + εz2
k

This leads to an importance function quadratic in cos θk+1. The non-optimal importance function

weighted kernel however is not normalized and we have to carry that in the weight. In Fig.(2.10)

we show the result of the calculation. We plot the result with two values of skin depth δ and show

that the error can indeed be arbitrarily reduced by reducing δ.

This generalizes to problems with more complicated geometries in a straightforward way. The

optimal importance function is the potential itself, and for that one, the normalization of the

importance-weighted kernel is unity. Hence for the general problem, one possibility is to utilize an

approximate potential as the importance function. This approximate solution could be obtained in

any number of ways including a finite element solution of the Poisson problem on a discretized grid

using an approximate electron density. The solution, its gradient and Laplacian could be tabulated

on the same mesh to generate a non-uniform distribution over a domain. To obtain the correct

potential at the domain center, one would need to evaluate the approximate normalization over

the domain surface and sample accordingly. Thus importance sampling would greatly improve the

efficiency of the algorithm.
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Chapter 3

Quantum Monte Carlo

In this chapter we discuss the two most common ground state quantum Monte Carlo (QMC) meth-

ods, namely variational Monte Carlo (VMC) and diffusion Monte Carlo (DMC). While discussing

each of these methods we will also describe how by using a stochastic Poisson solver within the

QMC approach we will be able to account for the correct electronic interaction. Note that we have

two different samplings or “walks”. The sampling to solve Schrödinger’s equation will be carried

out by fictitious particles which we will refer to by the standard name “walkers” described before.

The walks needed to solve the classical potential problem will employ similar fictitious particles,

but we will refer to them as “runners” to distinguish them from the walkers. In literature [75], they

have also been referred to as “Poissonons”. We call them runners since they can perform several

walks during a single step of the walkers.

3.1 Variational Monte Carlo

The variational approach posits a functional form of the trial wave-function ΨT (α) which depends

on a set of variational parameters {α} [28, 23]. Minimization of the energy, (or variance or a

mixture of both) with respect to the set {α}, by methods like correlated sampling [69, 22] gives

the variational estimate of the energy.

min
{α}

〈ΨT (α)|H|ΨT (α)〉 = EVMC,

where H = − 1
2∇2 + V is the Hamiltonian in a.u. The minimization aside, E = 〈ΨT |H|ΨT 〉 (de-

pendence on α dropped for convenience) is simply a multi-dimensional integral which is performed
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by the Monte Carlo. The estimator for this integral is called the “local energy”

EL(R) =
HΨT (R)

ΨT (R)
= −1

2

∇2ΨT (R)

ΨT (R)
+ V (R). (3.1)

The trial wave-function ΨT has to be a reasonably good approximation for the true ground-state

wave-function. This could be produced from other approximate calculations like density functional

theory (DFT) or could be analytic functions posited from theoretical considerations. It only needs

to satisfy some basic conditions; both ΨT and ∇ΨT must be continuous wherever the potential is

finite, and the integrals 〈ΨT |ΨT 〉 and 〈ΨT |H|ΨT 〉 should exist. To keep the variance of the energy

finite, we also need 〈ΨT |H2|ΨT 〉 to exist. The variational principle establishes EVMC as a rigorous

upper bound on the exact ground-state energy E0.

EVMC ≥ E0

A set of randomly distributed configurations {R} called walkers, are sampled according to the

Metropolis algorithm [51, 39], to generate the distribution Ψ2
T , i.e. P(Rm) = Ψ2

T , where P is the

probability distribution function (unnormalized). It is important to note here that this sampling

does not involve a knowledge of the potential profile V (r,Rm) at the point r due to the walker

configuration Rm. If M configurations are generated, then (after equilibration), for each of these

configurations the local energy EL(R) is evaluated and the average energy is accumulated

EVMC ≈ 1

M

M
∑

m=1

EL(R).

The trial moves are usually sampled from a Gaussian centered on the current position of the walker,

the variance of the Gaussian being chosen such that average acceptance probability is roughly 50%

or such that the diffusion constant of the random walk is maximized.

We are mainly interested in how this method can use a potential obtained by another indepen-

dent sampling (and hence has some noise associated with it). To this end,

〈V 〉VMC =

∫

V (R)Ψ2
T (R)d3NR ≈ 1

M

M
∑

m=1

V (Rm), (3.2)
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is an estimate of the potential energy of the state ΨT . Here V (Rm) is the exact potential energy

of the walker Rm distributed according to Ψ2
T . However even if we use a potential Ṽ (Rm) which

is stochastic,

〈V (Rm)〉VMC = 〈Ṽ (Rm)〉WOS (3.3)

This is seen from the following. The stochastic potential can be expressed as

Ṽ (Rm) = V (Rm) + ∆(Rm),

where in the limit of large samples, the error ∆(Rm) is normally distributed with mean zero. Hence

〈∆(Rm)〉 is,

lim
M→∞

1

M

M
∑

m=1

∆(Rm) =

∫

drP(Rm)

[
∫

∆P(∆)d∆

]

= 0, (3.4)

simply from the zero mean property of the error ∆. Thus the variational Monte Carloalgorithm

can simply use the stochastic potential Ṽ (Rm) without any other modifications. The primary

requirement for variational Monte Carloto work is that the distribution P(∆) have zero mean.

Consider a simple system with a known potential profile V (r). Suppose to calculate the expec-

tation of the potential energy corresponding to some given state ΨT (using variational Monte Carlo)

with a target error of δV , we need Nw walkers. We can perform the same calculation using the

stochastic potential instead of the known form, and using Nr runners (as described at the beginning

of this section) for each walker, a total of NwNr samples. Numerical experiments show that the

the calculation is optimal when Nr = 1 and Nw is chosen such that an independent stochastic cal-

culation of the potential Φ(P ) at some point P using Nw runners yield an error δΦ ∼ O(δV ). This

is because while on one hand maximizing the number of walkers allow the algorithm to maximize

the sampling of the phase space, on the other hand variational Monte Carlois insensitive to the

accuracy of the potential sampled (as long as there are enough samples). So it is optimal to sample

Ṽ (R) for more configurations using more walkers, than increasing the accuracy of each estimate.

Optimization of the trial wave-function ΨT can easily be carried out by correlated sampling as

usual, except that WOS can optimize only the variational energy and not the variance of the energy.

This is because of the simple fact that the variance calculated using the stochastic potential would

be 〈Ṽ 2〉 while what we need to compute is 〈Ṽ 〉2. This is a part of the general idea that only linear
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functions can be handled using the stochastically obtained potential. One important distinction

from usual computer algorithms needs to be emphasized. During the initial variational Monte

Carlorun to generate the configurations, programs record the walker configurations, but usually

not the corresponding local potential energies V (Rm) (the potential part of the local energy which

depends on the wave-function only through the walker distribution). When the optimizer modifies

the parameters α, changing the trial wave-function ΨT (α), the corresponding local Kinetic energy

−1
2∇2ΨT /ΨT also changes. And the local energy of the walker is calculated anew because this

saves storage and a known analytic potential is usually not too expensive to recompute.

However, recomputing the stochastic potential would in general produce a different estimate

than before, i.e. Ṽ (Rm) will be different each time we recompute it. This will introduce an error

which will not cancel on averaging, and hence destroy the optimization. This is easily remedied by

simply recording the estimate of the local potential energy Ṽ (Rm) while recording the configurations

{R}. This will eliminate the overhead of recomputing the potential which can be expensive, the

cost being a marginal increase in storage. Using the same local potential for a given configuration

at every iteration of the optimization process we ensure that we minimize the correct estimate of

the local energy.

3.2 Diffusion Monte Carlo

The stochastic potential approach is particularly compatible with variational Monte Carlo because

VMC is linear in energy, and thus able to take advantage of Eq.(3.3). Exact Green’s function Monte

Carlo methods are also linear in energy and would be able to take advantage of this approach.

However, diffusion Monte Carlo is not an exact Green’s function method because of the short time

approximation which simulates the Green’s function by diffusion and branching processes. This

makes the use of WOS with DMC not as straightforward as with VMC.

To see why this is the case, we review the basic ideas of the DMC algorithm. For practical

details regarding implementation, see reviews or books like [23, 68, 28]. We follow the description

of [23]. The Schrödinger’s equation in imaginary time

−∂tψ(R, t) = (H −ET )ψ(R, t)
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can be transformed into an integral equation of the form

f(R, t+ τ) =

∫

G(R,R′; τ)f(R′, t)dR′, (3.5)

where f(R, t) = ψ(R, t)ΨT (R, t) is a product of a known “trial” or “guiding” function ΨT and

the eigenfunction ψ. ET is an energy offset and G(R,R′; τ) is the Green’s function or propagator.

The integral equation is solved iteratively by starting with an initial distribution f init = ψinitΨT or

rather a set of walkers distributed according to finit. Repeated application of the Green’s function

to this state projects out the lowest energy state not orthogonal to ψinit.

3.2.1 The Green’s function Propagator

We first investigate the effect on the function ψ and then consider the modifications due to impor-

tance sampling on the function f = ψΨT . The essence of the algorithm is in calculation of this

Green’s function G(R,R′; τ),

G(R,R′; τ) = 〈R| exp [−τ(H −ET )]|R′〉

which obeys the same equation as the wave-function

−∂tG(R,R′; τ) = [H(R) −ET ]G(R,R′; τ)

with the initial condition G(R,R′; 0) = δ(R − R′). Using the spectral decomposition

exp [−τH] =
∑

i

|φi〉 exp [−τEi]〈φi|,

we can express the Green’s function as

G(R,R′; τ) =
∑

i

φi(R) exp [−τ(Ei −ET )]φ?
i (R

′),

where {φi} and {Ei} denote the complete sets of eigenfunctions and eigenvalues of H, respectively.

It is straightforward to see that as τ −→ ∞ the operator exp [−τ(H −ET ] projects out the lowest
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eigenstate |φ0〉 that has nonzero overlap with the chosen ψinit when the Green’s function is applied

to ψinit.

lim
τ−→∞

〈R| exp [−τ(H −ET )]|ψinit〉 = lim
τ−→∞

∫

G(R,R′; τ)ψinit(R
′)dR′

= lim
τ−→∞

∑

i

φi(R) exp [−τ(Ei −ET )]〈φi|ψinit〉

= lim
τ−→∞

φ0(R) exp [−τ(Ei −ET )]〈φ0|ψinit〉

By adjusting ET to equal E0, we can make the exponential factor constant, while the higher states

are all exponentially damped because their energies are higher than E0. This fundamental property

is the basis of the diffusion Monte Carlo method.

To discern the form of the Green’s function, we note that without the potential term, the

Hamiltonian is simply the Laplacian. This describes a diffusion process in 3N -dimensional space

(for N particles) for which the Green’s function is of the form

Gdiff(R,R′; τ) =
1

(2πτ)3N/2
exp

[

−1

2

|R − R′|2
τ

]

It is easy to see that this Gaussian form tends to δ(R−R′) as τ −→ 0. This describes the diffusion

of Brownian particles (walkers) in space and time, and thus we represent the distribution function

ψ(R, t) by a set of discrete Brownian sampling points or random walkers:

ψ(R, t) → {Rm} ≡
∑

m

δ(R − Rm)

The Green’s function Gdiff can be interpreted as a transition probability density for the evolution

of the walkers. Hence we have a set of Gaussians each with a variance of 3Nτ . The procedure

involves sampling each Gaussian by a new delta function the defines the new evolved position of

the walker.

Now if we consider the potential part, without the kinetic term we see that it is simply a rate

equation. The full Hamiltonian with the kinetic and potential together does not offer an explicit

solution in general and we have make approximations. An approximation of the Green’s function

can be obtained using the Trotter-Suzuki formula for the exponential of a sum of operators A and
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B:

exp[−τ(A+B)] = exp[−τB/2] exp[−τA] exp[−τB/2] + O(τ 3)

If we write H = T + V where T is the full N -particle kinetic energy operator and V is the total

potential energy, application of the Trotter-Suzuki formula with A = T and B = V −ET gives

G(r, r′; τ) = 〈R| exp[−τ(T + V −ET )]|R′〉 ≈ e−τ [V (R)−ET ]/2〈R| exp[−τT ]|R′〉 × e−τ [V (R)−ET ]/2

= exp[−τ(V (R) + V (R′) − 2ET )/2] ×Gdiff(R,R′; τ)

with the error proportional to τ 3. Importance sampling introduces a trial wave-function ΨT , and

this modifies Schrödinger’s equation to

−∂tf(R, t) = −1

2
∇2f(R, t) + ∇ · [vD(R)f(R, t)] + [EL(R) −ET ]f(R, t),

where ∇ is the 3N -dimensional gradient operator, vD(R) is the 3N -dimensional drift velocity

defined by

vD(R) = ∇ log |ΨT (R)| = ∇ΨT (R)/ΨT (R)

and

EL(R) =
HΨT (R)

ΨT (R)

is the local energy as defined for the VMC simulation. If EL and E′
L are the local energies at points

R and R′ respectively, then within DMC the Green’s function is approximated by

G(R,R′; τ) ≈ Gdiff(R,R′; τ)GB(EL, E
′
L; τ), (3.6)

where

Gdiff(R,R′; τ) =
1

(2πτ)3N/2
exp

[

−(R − R′ − τv(R′))2

2τ

]

,

and

GB(EL, E
′
L; τ) = exp[−(EL(R) +EL(R′) − 2ET )τ/2]. (3.7)

Gdiff is the Green’s function for a diffusion process, and GB is a weight factor. This approximation
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holds for small time step τ .

Importance sampling has several consequences. Firstly, in the regions where ΨT is large the

density of walkers is enhanced and vice versa. This is because the drift velocity vD(R) carries the

walkers along in the direction of increasing |ΨT |. Secondly, the exponent now contains the local

energy instead of the potential, and this is crucial because for a good trial function the local energy

is close to the ground-state energy eigenvalue and roughly constant. This stabilizes the walker

population as we will discuss next.

3.2.2 The Branching Algorithm

The factor GB in Eq.(3.7) acts as a time-dependent renormalization (reweighting) of the diffusion

Green’s function. This change of normalization can be incorporated into the process of walker

evolution in various ways. The simplest possibility is to assign each walker a weight and accumulate

the product of weights during the propagation of the walker. However, this is not an efficient

approach, since the weights of the walkers rapidly become very different, and, in the long time

limit, a few walkers dominate exponentially over the rest.

For improved stability and convergence most algorithms implement the weight factor GB

Eq.(3.7) by a “branching” or “birth/death” process in which the weight of a walker configura-

tion is reflected by the proliferation or decay in the number density of that configuration. Let

nB = GB denote the number of walkers that survive to the next step of the evolution. In the

simplest form the procedure is as follows:

1. If nB < 1 the walker continues its evolution with probability nB.

2. If nB ≥ 1 the walker not only continues its evolution, but another identical walker with the

same configuration is created with probability nB − 1.

Both these possibilities are incorporated in an algorithm in which nB = int[GB + ξ] copies of the

walker survive to the next step [64]. Here ξ is a random number drawn uniformly in the range (0, 1].

Thus in the regions of high potential energy GB is small and the walkers disappear, while in the

regions of low potential energy GB is large and the walkers proliferate. The branching algorithm

therefore transforms the weight accumulation in the low-energy regions into an increase in the

density of the walkers there.
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This is a marked difference from the VMC algorithm since here the number of walkers and hence

the walk itself depends on our estimate of the potential. If we sample the potential very crudely,

then the estimate could be much larger or smaller than the actual potential, this would lead to

a grossly incorrect branching. The consequences could be severe, relevant configurations could be

killed due to low estimates of the potential, while marginal configurations could proliferate. The

effect of such a calculation would in general be unpredictable and this problem needs to addressed

and solved before we can use the stochastic potential to perform DMC.

The energy offset ET , which determines the overall asymptotic renormalization, is used to

control the total population of walkers. During the propagation ET is occasionally adjusted so that

the overall number of walkers fluctuates around a desired mean value.

3.2.3 Branching with Stochastic Potential

The local energy as defined in Eq.(3.1) is the sum of kinetic and potential terms. But all that is

germane to the following discussion is contained in the simplest unsymmetrized form of the weight

GB . Thus

GB(V, τ) = exp [−V τ ]

which depends only on the potential energy V (R), is enough to illustrate all the issues of using a

stochastic potential with DMC. GB(EL) is simply GB(V ) with a factor which is independent of the

potential and hence not relevant to the ensuing discussion. These considerations greatly simplify

the notation. However in the numerical experiments in section 4.3 we use the importance sampled

DMC with the Green’s function given by Eqs.(3.6) and (3.7).

Sampling with a stochastic potential has serious implications for the branching. Unlike the

situation in VMC the effect here is nonlinear (exponential) and hence a simple averaging will not

get rid of the noise in the potential.. If we branch using a stochastically obtained potential Ṽ , then

in effect we will be branching on average according to 〈exp[−Ṽ τ ]〉. This is however not equal to

exp[−〈Ṽ 〉τ ] (i.e. exp[−〈V 〉τ ] since 〈Ṽ 〉 = V ) which is the branching we need. But nevertheless,

〈exp[−Ṽ τ ]〉 = exp[−〈V 〉τ ] + O(τ 2), (3.8)
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Figure 3.1: The Branching algorithm

i.e. the branching obtained by using the stochastic potential is correct to second order in τ . Hence

this poses a limitation on the size of the time step that we can use. However, the most important

factor in the error is the prefactor of τ 2 which depends on the device geometry in the problem.

This error is unacceptable since our main motivation of sampling the potential stochastically is to

improve the accuracy over other alternative methods. To improve the accuracy of the branching we

could use a large enough number of runners to estimate the potential so that the noise is negligible,

but this is very expensive and contrary to the philosophy of improving accuracy using a stochastic

estimate of the potential.

To overcome this problem we use tecniques inspired by the penalty method [12] which modifies

a random walk to accept noisy energies. The major part of the following discussion is a direct

application of the penalty method. However as we will show there are also some very subtle

and special considerations in the present use of the penalty method. Let Ṽ be a WOS potential
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estimate for some configuration R, while V is the exact potential for the same configuration.

GB(V ) is the previously defined branching term using the exact potentials, while G̃B(Ṽ ) is the

same expression using the WOS potentials. This branching factor will definitely be biased, and

hence we introduce a modified branching factor gB(Ṽ ) which depends only on the estimate Ṽ . Let

P(Ṽ ) be the probability for obtaining the estimate Ṽ . For the calculation using the WOS potential

to be accurate, we require that the average branching must satisfy

〈gB〉 ≡
∫ ∞

−∞
dṼ P(Ṽ )gB(Ṽ ) = GB(V, τ), (3.9)

so that even with a stochastic potential the walker would branch correctly on average.

In order to make progress we have to assume a form for the probability distribution P(Ṽ ). In

the limit of large number of runners, the central limit theorem guarantees that the distribution will

be normal, but our primary goal is to use as few runners as possible and hence the distribution

will certainly be somewhat different from a standard normal. Nevertheless, for now we assume a

normal distribution with mean V and a known variance σ2.

P(Ṽ ) =
1√

2πσ2
exp

[

−1

2

(Ṽ − V )2

σ2

]

. (3.10)

The variance σ2 is not known in general but we assume that we know it for now; the penalty

method estimates the necessary corrections which we will briefly mention at the end of this section.

A simple solution for the modified branching term gB(Ṽ ) which satisfies the above considerations

is

gB(Ṽ ) = exp[−(Ṽ + σ2τ/2)τ ]. (3.11)

To see that this indeed satisfies the condition that 〈gB(Ṽ )〉 = GB(V ), consider a simple form for

the modified branching gB = γ(σ2)G̃B(Ṽ ) along with the probability distribution Eq.(3.11) and

substitution in Eq.(3.9) leads directly to the form of γ(σ2) = exp [−σ2τ2/2]. Since σ2 is always

positive, this shows that we rely less on a noisy potential and branch less than what we would if

the estimate was exact.
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This can be easily extended to the importance sampled branching factor

gB(R,R′) = exp [−(ẼL + Ẽ′
L + (σ2 + σ′2)

τ

2
− 2ET )

τ

2
] (3.12)

where ẼL(Ṽ ) is the local energy using the stochastic estimate of the potential. The analysis up

to this point is a direct extension of the penalty method of Ceperley and Dewing [12], but certain

special considerations need to be made to apply the penalty method in the present context.

Branching according to the above factor in Eq.(3.12) instead of the branching of Eq.(3.7) will

produce the correct expectation of observables independent of the WOS potential Ṽ , for example

the kinetic energy. If however the observable is dependent on the stochastic potential Ṽ , like the

potential energy itself, we have to take care of the correlations between the observable and the

branching factor. This can be seen from considering the expectation of the energy which is usually

evaluated from the mixed estimator [23] given by

EDMC =
〈ψ0|H|ΨT 〉
〈ψ0|ΨT 〉

= lim
τ→∞

∫

dRf(R, τ)EL(R)
∫

dRf(R, τ)

= lim
τ→∞

∫

dRdR′G(R,R′; τ)finit(R
′)EL(R)

∫

dRdR′G(R,R′; τ)finit(R′)

=
1

M

∑

m

EL(Rm) (3.13)

where we have simply used the form of Eq.(3.5) starting with the initial distribution f init. If however,

we use DMC with a stochastic potential, then the expectation of the local energies become

ẼDMC =
1

M

∑

m

ẼL(Ṽ ,Rm)

=

∫

dRdR′dṼ dṼ ′dṼ ′′g̃(R,R′, Ṽ , Ṽ ′; τ)finit(R
′)P(Ṽ ′)P(Ṽ , Ṽ ′′)ẼL(Ṽ ′′,R)

∫

dRdR′dṼ dṼ ′g̃(R,R′, Ṽ , Ṽ ′; τ)finit(R′)P(Ṽ )P(Ṽ ′)
. (3.14)

Here g̃(R,R′, Ṽ , Ṽ ′; τ) ≈ Gdiff(R,R′; τ)g̃B(Ṽ , Ṽ ′; τ) is the modified Green’s function, P(Ṽ ) is

the distribution of the WOS estimate, and P(Ṽ , Ṽ ′′) is the joint probability distribution of obtaining

the estimates Ṽ and Ṽ ′′. Ṽ ′′ is the estimate used to evaluate the “modified” local energy ẼL(Ṽ ′′,R).

The estimate ẼDMC given by Eq.(3.14) is not in general equal to the desired estimate EDMC. The

problem and a solution can be seen from a simple analysis and a modification of the estimator that
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will give the desired result. The simplest way to accomplish this is to require the numerators and

denominators in Eq.(3.13) and Eq.(3.14) to be equal separately. Our previous choice of g̃B makes

the denominators equal. This is seen from the fact that

g̃ = γGdiffG̃B = [γ(σ2, σ′2)e−∆τe−∆′τ ]G(R,R′)

where as in prior notation ∆ = Ṽ − V and similarly for ∆′. Substitution into the integral in the

denominator of Eq.(3.14) proves the result.

The numerator is more tricky, and depends on the algorithm for obtaining the estimator. The

part of the estimator that does not depend on the WOS estimate, i.e. the kinetic energy is does

not pose any trouble, it integrates in the same way as the denominator. The potential part could

be obtained in two different ways. In the simplest case, we could use separate and independent

estimates Ṽ and Ṽ ′′ for the branching and the estimator. In this case the probabilities would be

uncorrelated and P(Ṽ , Ṽ ′′) = P(Ṽ )P(Ṽ ′′). In this case, the integrals again become similar to those

explained before and no modification is necessary, i.e. ẼL = ẼL. We will call this the uncorrelated

penalty correction. If however, we use the same potential Ṽ for both the branching and the

estimator, then the two estimates are identical, i.e. P(Ṽ , Ṽ ′′) = δ(Ṽ − Ṽ ′′)P(Ṽ ). In this case a

modification of the form ẼL(R) = ẼL(Ṽ ,R) +σ2τ makes the estimator ẼDMC equal to the desired

ẼDMC. This can be seen from simply substituting and performing the integration in Eq.(3.14).

Up to this point we have assumed that the distribution of the WOS potential Ṽ is normal,

P(Ṽ ) given by Eq.(3.10) with a known noise σ2. Ceperley and Dewing [12] discuss the practical

issues using the penalty method. Following them, for a potential estimate using n WOS runners,

we generate a sequence {Ṽ0, . . . , Ṽn−1}, where each Ṽk is independent. We use Ṽ =
∑

i Ṽi/n as

the potential estimate, and χ2 =
∑

i(Ṽi − Ṽ )2/n(n − 1) as the estimator for the noise σ2. Their

suggested form for the correction to the noise when the distribution is not normal is

σ2τ2

2
−→ χ2τ2

2
+

χ4τ4

4n(n+ 1)
+

χ6τ6

3(n+ 1)(n+ 3)
+ . . . (3.15)

in of Eq.(3.11).

We conclude this section by a comment on implementation. While constructing the propagator
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G(R,R′) it is customary to reuse the energy EL(R) which was calculated in a prior step during the

move to the configuration R. However, with the stochastic potential we need to reevaluate ẼL(R)

again, as otherwise this will introduce a bias.
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Chapter 4

QMC-WOS: A Toy Problem

We demonstrate the techniques discussed in this paper in the context of a simple problem and

calculate the polarizability of helium by placing a helium atom in the electric field generated

between the plates of an infinite capacitor. This will illustrate several features of implementing the

WOS algorithm. Alternatively, we can model the system by a constant electric field and compare

the accuracy of QMC using the stochastically estimated potential. The model potential neglects the

effect of induced image charges which is small when the plates are far apart, but the WOS solution

includes these corrections. We first describe the device, and compare the efficiency and accuracy

of different refinements of the basic WOS algorithm to estimate the potential profile within the

device.

4.1 Polarizability of He by QMC

We implement these techniques to measure the polarizability of helium, and compare the results

with that obtained by using a model potential. The polarization (estimated by 〈z〉) is not an

observable of the Hamiltonian, and so we have to use the mixed estimator

p ≡ 〈z〉 = 2〈z〉DMC − 〈z〉V MC

This clearly is not the best way to measure polarizability since this increases the variance of the

estimate. If the variance of the VMC and DMC calculations are σ2
V and σ2

D respectively then the

variance of p is (σ2
V +4σ2

D)1/2. Caffarel et al uses the Laplace transform of a two- (imaginary) time

correlation function for a more accurate estimate of the polarization by QMC [7]. Nevertheless,
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this simple approach will be able to investigate the main goal of this test, i.e. how the calculations

using the WOS potential compare with those using the model potential.

We place a helium atom between the plates of an infinite capacitor. The plates are at zL = ±10

a.u. and the helium atom is placed at z0 = 0. A voltage of ±Φapp is applied to the gates, and

this is compared with a model electric field of Ez = −Φapp/zL. All numbers are in atomic units.

The plates are kept sufficiently far away from the atom such that the effect of the images charges

induced in the plates is small. This allows a comparison of results obtained with WOS with that

using a model linear potential −Ezz. Also if the plates are very close to the atom it could interfere

with the electron cloud and distort the atom radically.

4.2 The Trial Wave function

We choose a trial wave-function of the form

ΨT (q1, q2) = |1s(q1)〉|1s(q2)〉 exp

(

− aq12
1 + bq12

)

where the qs are the electron coordinates, qij = |qi − qj |, and a and b are variational parameters.

We can determine a to be −1/2 by imposing the cusp condition [23] which reflects the divergence in

the wave-function when the two electrons approach each other. Here |1s(q)〉 is the single particle

orbital and same for up and down spins. This simple two electron problem avoids the complications

of nodes in wave-functions and helps illustrate the main issues of using WOS with quantum Monte

Carlo.

The conditions of the problem have been set such that the capacitor adds only a small pertur-

bation to the helium atom, and thus we need only modify the single particle orbitals very slightly

to reflect the polarization of the atom in the z direction. The wave-function of helium in free space

is spherically symmetric, and since VMC does not modify the wave-function it would not be able

to polarize the atom. Hence we introduce a parameter α which would control the polarization of

the atom. A zero value of α would correspond to the unpolarized case.We choose a form

|1s(q)〉 = (1 + αqz)

4
∑

j=0

cj exp(−λjq),
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where qz is the z-coordinate of q, and the parameters cj , λjs are obtained from calculations of

Clementi and Roetti [13]. We use pre-optimized values of these parameters (c1 = 2.063076 ×

10−1, c2 = 2.2346 × 10−1, c3 = 4.082 × 10−2, c4 = −9.94 × 10−3, c5 = 2.3 × 10−3 and λ1 =

1.4171, λ2 = 2.3768, λ3 = 4.3963, λ4 = 6.527, λ5 = 7.9425).

We optimize the Jastrow parameter b and the polarization parameter α by correlated sampling.

When we use the stochastic potential we minimize only the mean of the local energy, and not

any combination of the variance. As described before, we record not only the configurations {R},

but also the local potential energy V (Rm) ∀ m for use in minimization of the variational energy.

The polarization obtained from VMC with the optimized parameters provide an estimate for the

polarization, but as noted earlier this is not very accurate since polarization is not an observable

of the Hamiltonian.

4.3 Polarizability Results and Analysis of the Penalty Method

We test our code by calculating the ground state energy of a helium atom, our result −2.90361(9)

a.u. compares well with the best known theoretical estimate of −2.903724377034119598 a.u. [26]

and experimental value of −2.9038 a.u. [70]. Next we carry out the calculations in presence of an

electric field by two different methods as described before. WOS refers the calculations using the

stochastic potential, and “model” refers to the linear potential model. The results are shown in

Table 4.1. From a least-square fit of the data our estimate for the polarization is 1.417(16) a.u.

from the WOS data as in Fig.(4.1) and 1.362(16) a.u. from the model calculation, which can be

compared with 1.382(16) a.u. as obtained by Cafarrel et al. [7], and with the established value of

0.201 × 10−24 cm3 or 1.36316 a.u. [15, 56, 35].

The result suffers from the drawbacks of our estimator as discussed before, but the main point

to note is the comparison between the WOS and “model” results. The difference in the result

comes from the induced charges in the capacitor (not captured in the model) as will be discussed

below. From Table 4.1 we see that the results agree within error-bars for both the optimized VMC

calculations and DMC. The DMC calculations were carried out using only twenty runners for each

walker configuration. We also use the penalty method the results of which will be discussed next.

To investigate the effect of using the WOS potential in DMC we study the time-step error,

48



0 0.02 0.04 0.06 0.08 0.1
E

field 
(a.u.)

0

0.05

0.1

0.15
Po

la
ri

za
tio

n 
(a

.u
.)

Figure 4.1: Least square fit of the polarization data obtained from the WOS calculation of the
helium atom placed between the plates of an infinite capacitor. The result used is the mixed
estimator obtained from the VMC and DMC data presented in Table 4.1. The data for the model
calculation is not shown since it nearly overlaps with the WOS data.

since we expect the effect of the using the stochastic potential to be magnified with increasing

time-step, as seen in Eq.(3.8). In Fig.(4.2) we compare the DMC ground state energy from the

model potential calculation to that using WOS for different number of runners (per walker). The

uppermost curve labeled “model” is the linear potential model which shows a quadratic scaling with

the time-step. The lowermost curve labeled WOS(1) represents DMC calculations using a single

runner (per walker) without any penalty correction. This obviously suffers from the branching error

which is magnified at larger time-steps.

If however we increase the number of runners (per walker) to 5, we see from the WOS(5) curve

that the result is improved but still suffers from the bias. The use of the penalty method corrects

this problem, and the curve marked penalty(5) follows the model potential for the entire range of

τ that we tested. We also note that the correction of Eq.(3.15) did not make a difference to the

calculation within the given error-bars. If we increase the number of runners to about twenty, then
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EG pz

VMC DMC VMC DMC Mixed
Ez WOS model WOS model WOS model WOS model WOS model

0.02 -2.888461(92) -2.888080(97) -2.904313(85) -2.904149(89) 0.0268(6) 0.0257(6) 0.0277(7) 0.0277(7) 0.0286(15) 0.0297(15)

0.04 -2.889087(95) -2.888904(93) -2.905298(82) -2.904932(82) 0.0611(6) 0.0469(6) 0.0595(6) 0.0529(6) 0.0579(15) 0.0589(15)

0.06 -2.890392(100) -2.890119(94) -2.906741(87) -2.906314(81) 0.0827(6) 0.0702(7) 0.0830(7) 0.0776(7) 0.0833(15) 0.0850(16)

0.08 -2.892102(100) -2.891927(99) -2.908636(84) -2.908208(86) 0.1084(7) 0.1081(7) 0.1098(7) 0.1109(7) 0.1112(16) 0.1137(16)

0.10 -2.894533(110) -2.894134(95) -2.911209(89) -2.910856(89) 0.1332(7) 0.1332(7) 0.1385(7) 0.1341(7) 0.1438(16) 0.1350(16)

Table 4.1: Calculation of polarization of helium with quantum Monte Carlo. The system consists of a helium atom placed between
the plates of an infinite capacitor as described in this section. Two similar calculations were run, one using the stochastic potential
using the WOS algorithm, and the other using a model linear potential. The VMC results here are obtained by optimizing the trial
wave-function. For DMC, we used a time-step of τ = 0.01.
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the basic WOS calculation without the penalty method is greatly improved, and it overlaps with

the correct result for a large range of τ up to about 0.2 in this calculation; but beyond that the bias

in the result becomes apparent. Since the calculations using the penalty method with five runners

and twenty runners (per walker) overlapped with each other we did not show them separately in

the figure.

0 0.1 0.2 0.3

Time Step τ (Hartree
-1

)

-2.92

-2.915

-2.91

-2.905

E
D

M
C

penalty(5)
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Induced charge effect

Figure 4.2: Ground state DMC energy of the helium atom in an electric field of Ez = 0.1 for different
time steps. In parenthesis is the number of runners used per walker for the WOS calculations. This
is compared with the calculation using the model field.

Though the model and the penalty calculations run parallel, they are offset by a constant

amount. This is to be expected since the model calculation neglects the effect of the charges

induced on the capacitor plates. A very simple calculation using dipole images (but neglecting

multiple reflections) estimates this effect to be about 2× 10−4 a.u., the same order of the observed

shift of 3 × 10−4 a.u. Thus the WOS calculation can capture the induced charge effect neglected

by the model.

To study the effect of the penalty method, we compare in Fig.(4.3) the effect of the two different
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Figure 4.3: Testing the convergence of the two penalties. The uncorrelated penalty method using
an independent uncorrelated (to the branching) potential estimate converges much faster than the
approach where we modify the estimator. However, for a large number of runners the second
converges to the correct result from above. The calculation was carried out at τ = 0.25. The
difference from the model is due to the induced charge effect.

types of penalty corrections that we discussed in section 3.2. In the calculations we use a large

number of runners (per walker) to estimate the potential to be used in the branching term. The

first estimator uses a separately sampled value, we call this the uncorrelated penalty approach. We

can construct another estimator using the same estimate that we use for the branching, but then

we have to add another correction to it as discussed before. Fig.(4.3) shows that the uncorrelated

penalty method has a faster convergence, but both approaches converge for large number of runners

(per walker).

Also shown in Fig.(4.3) is the estimate of the model calculation. We see that the WOS calcu-

lations converge to a value lower than the model. This is the induced charge effect as mentioned

earlier. As we increase the separation of the capacitor plates, this effect decreases and for a plate

separation of about 100 a.u. (keeping the electric field constant) the WOS results converge to the
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model value. This demonstrates another important feature of the algorithm. In order to keep the

field constant, we had to increase the gate voltages. The algorithm remained stable under this

scaling.

The WOS calculations with a single runner (per walker) were only about four times slower than

that with the model potential, this is not too bad considering the generality of the WOS method.

The WOS method can be applied to any complicated geometry for which a model might not exist,

however the time taken by the code will also depend on the complexity of the device geometry.

However, calculations scales linearly with the number of runners, for instance the calculation with

twenty runners was about twenty times more expensive than the one with a single runner.
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Chapter 5

Laterally Coupled Quantum Dot

Advances in semiconductor technology has allowed the construction of nano-scale devices which can

create small islands of discrete number of electronic charges called quantum dots. These islands

exhibit electronic properties (like ionization energy and discrete excitation spectrum) very similar

to that of atoms and are hence also known as artificial atoms [45] . A common way to fabricate

quantum dots is to restrict the two-dimensional electron gas in a semiconductor heterostructure

laterally by electrostatic gates, or vertically by etching techniques [62]. This creates a bowl-like

potential in which the conduction electrons are trapped. The fact that their properties can be

manipulated by controlling gate voltages or by manufacturing techniques make these “designed

atoms” an extremely interesting system to study and candidates for a variety of technical appli-

cations, from quantum computing to biological applications. The fabrication and etching methods

and experimental background has been covered exhaustively in the literature [62, 72]. Of particular

interest to scientific studies are the shell like electronic structure , addition energies [24], Coulomb

blockade [44] and the effect of magnetic fields on the singlet-triplet splitting [73].

The traditional approach to attack a correlated few-electron problem like the few electron

quantum dot has been to apply configuration-interaction methods [6], but they scale very poorly

with increasing electron number. Moreover most theoretical calculations assume that the excited

state in the vertical direction is inaccessible to the electrons, and hence only two dimensional

calculations are considered. Unfortunately recent studies by Rontani [65] have concluded that

2D models lead to inadequate estimations of the Coulomb interactions in realistic dots. As a

consequence they conclude that studies in 2D are overly biased towards electronic localization.

In real quantum dots the lateral confinement is about 10 times that of the vertical confinement,
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however studies [41] have shown that the exact exchange energy of the system approach the 2D

limit only when the lateral confinement is about 30 times that of the vertical confinement. Wilkens

[72] discusses in some detail the historical background of applying quantum Monte Carlo to realistic

three dimensional model of quantum dots. There has been investigations into the extent of the

singlet-triplet splitting on model 2D potentials, either by Hartree-Fock [73] or even spin-density-

functional theory and VMC [67]. But none has applied diffusion Monte Carlo to a realistic 3D

model. We use the DFT calculations [50] on a realistic device to apply the quantum Monte Carlo

algorithm.

5.1 The Device Structure

We follow the semiconductor heterostructure model described by Elzerman [20] and Zhang [76].

The upper part of Fig.(5.1) shows the top view of the LCQD and QPC gates in the xy-plane. The

metal gates are used to define the two wells which confine the dots. The lower part of the figure

shows the cross sectional view of the layer structure in the vertical z-direction. The model involves

four different layers of semiconductors, each of different thickness and with different doping. The

composition of the device structure is given in Table (5.1).

material thickness (Å) type doping(cm−3) ε m? Ec(eV)

GaAs 50 n ND = 1.5 × 1018 12.406 0.067 0.0
Al0.27Ga0.73As 650 n ND = 1.5 × 1018 12.244 0.092 0.33
Al0.27Ga0.73As 200 − undoped 12.244 0.092 0.33

GaAs 16, 100 p NA = 1.0 × 1015 12.406 0.067 0.0

Table 5.1: The vertical composition of the heterostructure.

The 2D electron gas is formed in the interface between the undoped AlGaAs layer and the

lightly p-type doped GaAs layer, approximately 900Å below the top surface. Biases applied to the

top gates clear islands in this gas to form the double well structure represented by the ovals in the

figure. This is due to the geometry of the L and R gates. The coupling between the two dots is

dependent on the height of the potential barrier between the two well, and this is controlled by

the M and T gates. The PL and PR gates, called the “plungers”, have smaller feature sizes and

are used for fine tuning the confinement of each dot, i.e. they control the depth of the wells. The

QPC-L and QPC-R are associated with the L and R gates (via the tips) and forms the quantum
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Figure 5.1: A schematic diagram of the laterally coupled double quantum dot heterostructure. The
upper section of the figure shows the top surface with the external gates. The length along the
horzontal direction is 1400 nm, with the distance between the L and R gates being about 500 nm,
and that between PL and PR being about 300 nm. The lateral dimension of the device is 570 nm.

point contact (QPC) detectors. The charging path of the dots are shown by the curved arrows

while the detection current is shown by the straight ones. The current through the dots influences

the detector currents which is picked up by the QPCs.

5.2 The Density Functional Approach

The starting point of the QMC calculation is from the solutions of the density functional theory

(DFT) calculations. We will only describe the approach, details can be found in the works of

Leburton and coworkers [59, 47, 76] The electronic charge density in the quantum dot region is

obtained by simultaneously solving the Kohn-Sham equations [42] for the spin up and spin down

electrons. The density if obtained through the eigen-functions of the Kohn-Sham Hamiltonian

H = −}
2

2
∇
[

1

m?(r)
∇
]

− eΦ(r) + ∆Ec + Φxc(n),
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where m?(r) is the material dependent (i.e. for the heterostructure, position dependent) effective

mass. Φ(r) is the potential obtained from Φ = Φext + Φdoping + ΦH . Φext is the potential due to

the external gates, Φdoping is the potential due to the ionized donors and acceptors, and ΦH is the

Hartree potential arising due to the repulsive inter-electronic interaction. ∆Ec is the conduction

band offset between different materials. Φxc(n) is the exchange correlation potential energy for

spin-up and spin-down, computed within the local spin density approximation (LSDA) according

to the Perdew and Wang formulation [57].

The electron density in the LCQD region n(r) is computed from the sum of the densities of the

up and down eigen-functions (i.e. their modulus squared). The electrostatic potential, which is of

special interest for the QMC-WOS calculation, is obtained by solving the Poisson’s equation

∇ · [ε(r)∇]Φ(r) = −ρ(r)

by a finite element method (FEM). ε(r) is the material (position) dependent permittivity and ρ(r)

is the total charge density given by

ρ(r) = e[N+
D (r) −N−

A (r) + p(r) − n(r)]. (5.1)

Here N+
D (r) and N−

A (r) are the ionized donor and acceptor concentrations in the relevant device

layers, and p(r) is the hole concentration. The electron density n(r) is obtained from solving

the Kohn-Sham equations in the LCQD region, while outside this region, the free electron charge

density is determined from the semi-classical Thomas Fermi approximation.

So the charge density depends on the potential through the Kohn-Sham equations while the

potential depends on the charge density by the Poisson equation. This is solved self-consistently by

FEM. For the Poisson equation, Neumann boundary conditions (normal component of the electric

field goes to zero) are assumed on the lateral and bottom surfaces, while the potential on the top

surface is governed by the metal gates and the Schottky barrier. So the LCQD is in a small region

embedded deep within the device structure. In the model, the physics in the LCQD is dominated

by quantum mechanics, while outside the electrons are treated semi-classically, as noted above.

This is also reflected in the grid mesh used to represent the device. The Poisson equation is solved
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Figure 5.2: A schematic diagram of the heterostructure model. The device is represented on a non
uniform rectangular grid which is finer near the quantum dot region, represented here by the oval.
Since the electrons are completely confined within this region the Schroedinger’s equation is solved
within this inner grid.

over the entire device represented on a three dimensional non-uniform rectangular grid of dimension

141× 52× 96. Since the wave function of the electrons in the dot vanish deep within the structure,

the Kohn-Sham equations are solved on a smaller section of the grid spanning 71 × 45 × 19 grid

points. Fig.(5.2) shows a schematic diagram of the model.

5.3 The Quantum Monte Carlo Model

In QMC we simulate only the electrons in the LCQD region. The calculations are carried out under

the effective mass approximation, just like the DFT model. In this approximation, the electrons

are assumed to occupy the conduction band (Ec) and move through the semiconductor lattice in

such a way that its motion can be described as that of a free electron but with an effective mass m?

which is related to the curvature of the band [30]. QMC is a zero temperature method, and hence

to a good approximation, the electrons occupy only the lowest conduction band, and at the minima

their effective mass remains approximately constant while they move through the semiconductor’s

bulk.

For numerical accuracy, we follow the standard practice of adopting the effective atomic units

by setting e2/(4πεε0) = m?
GaAsme = } = 1. Since the effective mass of the electron in GaAs is

only a fraction of the free electron mass me, the effective units are different from the standard

atomic units and represent the energy and length scales of the problem more effectively. The
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effective Bohr radius a?
B and the effective Hartree Ha? are given by a?

B = (4πεε0}
2)/(m?e2) and

Ha? = (m?e4)/(4πεε0})2. In terms of the standard atomic units

a?
B =

εme

m?
aB , Ha? =

m?

meε2
Ha

where aB = 0.5291772108Å, and Ha=27.2113845 eV. Since the electrons are mostly confined in

the region slightly below the interface between the GaAs and AlGaAs layers, we use the GaAs

as the reference material. With this choice the effective units become a?
B = 9.79847 nm and

Ha? = 0.0118457 eV.

We employ two different approaches within the QMC framework. In the first approach following

Matagne et al [48, 72] we use the potential profile within the device obtained from the converged self

consistent solution of Poisson and Kohn-Sham equations within DFT as described in the previous

section. In the second approach we use the hybrid QMC-WOS method to derive the potential

consistent with the boundary conditions while solving the quantum problem.

5.3.1 QMC with External Potential

In the effective units the Hamiltonian reduces to

H = −1

2

Ne
∑

i−1

∇i ·
[

1

m?(ri)
∇
]

+

Ne
∑

i=1

Φconf(r) +

Ne
∑

i6=j

1

ε|ri − rj|
(5.2)

where m? and ε are both unity as long as the electrons remain within the GaAs layer, otherwise the

ratio of the parameters is used. Φconf is the confining potential of the dot arising from the applied

gate voltages and the screening of the doped charges. This is obtained from the DFT calculations

Φconf = Φext +Φdoping, discrete values distributed on the three dimensional grid as described before.

These values Φconf ≡ Φconf(i, j, k) are then interpolated using tricubic splines to obtain Φconf(r)

at any arbitrary point within the device. Of course, the electrons remain well confined within the

LCQD region, but this is immaterial to the QMC algorithm. Thus the electrons can forget about

the entire device and merely deal with the fact that they are confined by some potential supplied

to the problem.

The last term in the Hamiltonian is the repulsive inter-electron Hartree energy, dependent
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simply on the inter-particle separation. As mentioned above, the permittivity is unity (in the

scaled units) as long as the electrons are in GaAs. Since the permittivity does not vary appreciably

between the materials we use ε = 1 throughout the calculation. This neglects the effect of image

charges as the dielectric interface but is a reasonable approximation to make.

The external potential however is also an approximation. It is calculated using an average elec-

tron density in the DFT calculation, and the resulting image charges at the surface and interfaces.

However, as the electrons evolve in the QMC, the images in the metal gates also respond. This

Hamiltonian does not capture these effects.

5.3.2 QMC with Stochastically Obtained Potential

The idea behind obtaining the potential by a separate stochastic process during the QMC sampling

is to capture the electronic interaction exactly. The Hamiltonian can be simply written as

H = −1

2

Ne
∑

i−1

∇i ·
[

1

m?(ri)
∇
]

+ ΦWOS (5.3)

where ΦWOS represents the entire potential energy obtained by the WOS method. This method

captures the electronic interaction, the effect of the charges induced at the dielectric interfaces and

the external surfaces.

The WOS calculations satisfy the boundary conditions. For ease of computation, we import the

boundary values on the grid from the DFT calculation. This is simply an easy way of representing

the boundary values, we could have employed any other scheme. The WOS walks (or runs) always

end on the boundary where the solution is specified. Hence Dirichlet boundary conditions make the

calculations more efficient. However this also modifies the problem slightly, imposing the boundary

values make the surfaces act as metals. The top surface is indeed embedded with metal gates (all

other surfaces are too far away), but the remainder of the surfaces are free to the external media

(could be vacuum). The WOS algorithm is well equipped to handle this kind of problems, and we

show a few sample paths which accomplish the task in Fig.(5.3). Since the potential is now not

specified on sections of the top surface, the walks can diffuse through them outside the device. We

could assume the exterior to be vacuum without any boundary, in that case the walks would have to
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Figure 5.3: A schematic diagram of paths if we do not impose Dirichlet boundary conditions on the
ungated sections of the top surface. Four typical types of path are shown. Path 1 diffuses through
the surface but terminates on a gate where the potential is specified. Path 2 diffuses far outside
the device, and is assumed to terminate on an artificial grounded surface. Path 3, diffuses outside,
but then comes back into the device and Path 4 is reflected from the surface back into the device.
Since typically ε� 1, most of the paths would be of this type.

diffuse back to the metallic plate before they can end. On the other hand we could impose artificial

boundaries, for example to encase the entire device within a large grounded metal box. This will

provide faster convergence. Typically the permittivity of the material will be much larger than

that of vacuum ε� 1, this would mean that most paths (a fraction of ε/(ε+ 1) on average) would

be reflected back into the device like path number 4 in Fig.(5.3). But this approach becomes too

expensive a calculation, and we simply assume the boundary conditions from the DFT calculations.

Other than the boundary conditions effecting Φext we also have to account for the effect of

doping Φdoping on the confining potential. The doped distribution of these charges (treated semi-

classically) is the initial condition of the problem. However as seen from Eq.(5.1) the charge

density itself depends on the electronic walker density, and the initial dopant density is modified by

emergence of the depletion layers. However the dependence of the charge density on the electronic

density is extremely nonlinear [59] and this poses considerable difficulty for the WOS method

which is effective primarily for linear problems. One possible approach is to assume a Thomas
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Fermi like distribution with adjustable parameters for this density, and optimize those parameter

by a variational calculation. However we have not experimented with such an approach. We take

the simpler route of using the doped charge density on the grid (ρ(r)−n(r)) from the DFT solution

and assume that this is not affected by the electronic motion.

5.4 Construction of the Wave Function

Quantum Monte Carlo requires a trial wave-function ΨT supplied to the algorithm. For this purpose

we construct the singlet and triplet wave functions from single particle orbitals. First we review

the structure of these wave-functions following Ashcroft and Mermin [1]. The spin part of the

singlet wave-function (|↑↓〉− |↓↑〉)/
√

2 is antisymmetric and hence the space part is symmetric due

to Pauli exclusion principle. Conversely, the space part of the triplet state is the lowest energy

antisymmetric state. Since the Hamiltonian is spin independent, the spin part integrates out, and

we need only focus on the space part.

The trial wave function is of the form

ΨT (r1, r2) = exp

(

− ar

1 + br

)

ψs,t(r1, r2)

where r = |r1 − r2| and ψs,t is the wave function for the singlet or triplet.

5.4.1 Singlet and Triplet wave functions

Let ψ0(r) and ψ1(r) be the solutions of lowest energy of the single particle problem. The symmetric

solution of lowest energy under independent electron approximation is

ψs(r1, r2) = ψ0(r1)ψ0(r2)

and the lowest antisymmetric solution is

ψt(r1, r2) = ψ0(r1)ψ1(r2) − ψ0(r2)ψ1(r1)
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For well separated wells, the tight binding method provides an excellent approximation; in this

approach the one-electron-stationary-state wave functions of a solid are expressed as linear combi-

nations of atomic stationary-state wave functions centered at lattice points. The laterally coupled

quantum dot structure is much like a hydrogen molecule, instead of the two nuclei the two electrons

are confined by the double well. In that vain consider φL(r) and φR(r) to be the single particle

orbitals centered on the left and right dot respectively. The N = 2 correct linear combinations are

ψ0(r) = φL(r) + φR(r)

ψ1(r) = φL(r) − φR(r) (5.4)

If the one-electron levels have this form them the two electron wave functions become

ψs(r1, r2) = φL(r1)φR(r2) + φR(r1)φL(r2)

+ φL(r1)φL(r2) + φR(r1)φR(r2) (5.5)

and

ψt(r1, r2) = 2[φR(r1)φL(r2) − φL(r1)φR(r2)] (5.6)

When the wells are very close to each other (for a large gate bias for example), Eq.(5.5) is an

excellent approximation. In the extreme case when the two wells coincide, this corresponds to a well

of double the strength. On the other hand, when the dots are well separated, the overlap of φL(r)

and φR(r) is negligible, and electrons located in different wells will have negligible contribution

from the last two terms in Eq.(5.5), and effectively reduce to

ψ̄s(r1, r2) = φL(r1)φR(r2) + φR(r1)φL(r2), (5.7)

the Heitler-London approximation.

5.4.2 The Single Particle Orbitals

A good possible starting point for constructing the QMC trial wave function ΨT is the LDA single

particle solution of the problem. However, the LDA data on the grid suffers from very small noise
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at several orders of magnitude smaller than the peak value (typically O(10−6)). Such small noise is

irrelevant to any integrating scheme, but it adversely effects the Monte Carlo sampling. The noisy

part of the LDA wave function is close to the wells and the electrons do indeed sample the gradient

at neighboring points. Furthermore we found the grid point density in the vertical direction to be

insufficient for accurate Monte Carlo calculations.

We performed our calculations with a hybrid of analytic functions, and discrete valued functions

on the grid. We assumed a separable form of the wave function

φT (r) = X(x)Y (y)Z(z).

The functional forms were taken so as to approximate the LDA by fitting them along cross sections.

We plotted the LDA orbitals along the principal directions through the point of the maxima, and

fitted the analytic functions to those curves. Hence the single particle orbitals were smooth and

well behaved and did not have spurious nodes.

Along the y-axis the potential is approximately parabolic, and so a Gaussian is a very good

approximation. We chose the mean and width of the Gaussian to fit the data.

Along the x-axis, the potential is in the form of a double well, and the wells are locally parabolic.

We tried approximating the wave function as a sum of two Gaussians centered on each well. This

however does not provide the proper overlap between the two orbitals φL(r) and φR(r). A much

better approach is to plot the LDA grid orbitals along the x-axis passing through the maxima of

the wave function, and interpolate between these grid points to obtain a smooth and well behaved

function with a better overlap.

Along the z-direction the region of interest is just adjacent to the band offset region. In this

region the potential is almost linear below the interface. At the interface, the band offset creates a

finite step. For this triangular well, an AiryAi function is a very good approximation. So, below

the interface we assumed and AiryAi function, and above we assumed exponential decay. At the

interface we simply matched their derivatives to produce a smooth and continuous function.

If the potential is modeled as shown in Fig.(5.5) then a very good approximation to the single
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particle orbital is given by

Z(z) =











A0 exp [−κ(z − zI)] if z < zI

AiryAi[(2meffEz)
1/3(z − z0 −EL/Ez)] otherwise

The matching conditions give

A0 = AiryAi[(2meffEz)
1/3(zI − z0 −EL/Ez)]

κ and EL are obtained from a self consistent calculation to match the derivative of the function at

the boundary zI .

Both the Y (y) and Z(z) forms depends on adjustable parameters and can be optimized. But

our fit was sufficiently good such that these parameters did not vary under optimization. The width
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obtained from the LDA potential.

of the wells and the barrier is controlled by the gate voltages, but the functions did not vary much

along these transverse directions, so we used the same parameters for all voltages.

5.5 A Modified Sampling Technique

The heterostructure device is a rectangular structure with planar interfaces between each layer;

though the layers have different dielectric functions, within each layer the dielectric is uniform. In

order to calculate the potential at any point in the device by employing the WOS algorithm (as

described in section 2.4.2), we would have to construct a skin region around each interface. This

algorithm would be rather slow since each time to cross over to another layer the walk would have

to converge to the interface, hop with some given probability depending on the relative dielectric

constants, and continue. Of course we could have used rectangular domains for faster convergence,

but then calculating the image potential would have become difficult (as described in section 2.3.1).

In this section we will device a modified sampling technique which will enable us to sample more

efficiently, i.e. the walk will converge faster to the external surface. The main idea is as follows. In

the basic technique outlined above we construct the spherical domain limited to only one material.

This inhibits large step sizes. Instead of this approach we will construct the maximum sphere within
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the device which will allow for larger domain radii. But these domains would straddle several layers,

and hence the sampling would involve the interfaces as well as the domain surfaces.

The general problem is to obtain the Green’s function for the Poisson equation defined in a

region of spatially varying dielectric function ε(r). As in section 2.3, we will build the exact

Green’s function G(R,R′) from another Green’s function GD(R,R′) which is exact only within

the domain D.

∇ · [ε(r)∇]Φ(r) = −ρ(r) (5.8)

The Green’s functions between two points r and Rs+1 are defined by

∇ · [ε(r)∇]G(r,Rs+1) = −δ(r − Rs+1) G(r,Rs+1) = 0, if r ∈ ∂Ω

∇ · [ε0∇]GD(Rs, r) = −δ(Rs − r) GD(Rs, r) = 0, if r ∈ ∂D (5.9)

We perform the following mathematical operations on the above and subsequently derived

equations. We multiply the above set of equations by GD(Rs, r) and G(r,Rs+1) respectively,

subtract the first from the second and integrate over the entire domain volume D to obtain an

expression for G(Rs,Rs+1). Using the identity a∇2b = ∇ · [a∇b] − ∇a · ∇b, Gauss’s divergence
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theorem and the Dirichlet boundary condition that the Green’s functions vanish on the boundaries,

we have

G(Rs,Rs+1) = GD(Rs,Rs+1) +

∫

D

d3r[ε0 − ε(r)]∇GD(Rs, r) · ∇G(r,Rs+1)

− ε0

∫

∂D

d2r · ∇GD(Rs, r)G(Rs,Rs+1) (5.10)

This result is completely general and holds for any arbitrary domain shape. However for the

particular geometry of interest, namely that of the heterostructure device discussed earlier, we can

decompose the integrals over each layer of constant dielectric function. Defining δεi = εi − ε0, and

using the definitions of the Green’s function Eq.(5.9) and Gauss’s divergence theorem we get

εk
ε0
G = GD −

N−1
∑

i=0

εi

∫

σi

d2rr̂ ·GDG+
N−1
∑

I=1

∆εI

∫

σI

d2rẑ · ∇GDG (5.11)

where the center of the domain Rs lies in the k-th layer. ∆εI = εI − εI+1, I being the index of the

interfaces. Σi denotes the spherical part of the domain surface while σi denotes the planar interface

within the spherical domain. Consult Fig.(5.6) for labels and indices.

5.5.1 The Spherical Green’s function

Considering the domain Green’s function for the spherical domain given by Eq.(2.9)

GD(Rs, r) =
1

4πε0

(

1

|Rs − r| −
1

ds

)

,

where ds is the radius of the domain. Without loss of generality we can assume Rs = 0, such

that GD = (1/4πε0)(1/r − 1/ds). The gradients on the surfaces, the spherical part on the domain

surface, and on the interfaces become

∇GD

∣

∣

∣

Σ
= − 1

4πε0

1

d2
s

r̂, ∇GD

∣

∣

∣

σ
= − 1

4πε0

1

(d2
I + `2)

r̂

68



PSfrag replacements
ε0

ε1

ε2

PSfrag replacements

r̂
ẑ
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After some algebra, we get the final sampling equation

G(Rs,Rs+1) = GD(Rs,Rs+1) +

N−1
∑

i=0

εi
εk

∫ θi

θi+1

sin θ
dθ

2

∫ 2π

0

dφ

2π
G(rS ,Rs+1)

−
N−1
∑

I=1

∆εI
2εk

d̄I

∫ 2π

0

dφ

2π

∫ LI

0

`d`

(d2
I + `2)3/2

G(rI ,Rs+1) (5.12)

where rS(ds, θ, φ) is a point on the surface of the spherical domain, and rI(`, φ, zI ) (in cylindrical

coordinates) is a point on the I-th interface. And d̄I = zI − Rsz. The problem now is reduced to

sampling this expression.
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5.5.2 Sampling the Green’s function

A method to sample expressions of the form of Eq.(5.12) is given in Appendix A.7. Here we lay

out the steps of the algorithm, for details refer to the Appendix. As usual the random walk starts

from the point we need to evaluate the potential at. A maximum sphere is constructed centered

at this point. This sphere will in general straddle several dielectric layers as described above. The

probabilities of sampling each section of the surfaces are calculated from the following formulae.

For each spherical surface-section Σi compute

N (1)
i =

1

2

εi
εk

d̄i+1 − d̄i

ds
∀ i = 0, . . . , N − 1

and for each of the planar interface section σi compute

N (2)
I =

1

2

∆εI
εk

1 − dI/ds

dI
∀ I = 1, . . . , N − 1

These are summed to obtain the total weight

N =

N−1
∑

i

N (1)
i +

N−1
∑

I=1

N (2)
I =

N−1
∑

i

1

2

εi
εk

d̄i+1 − d̄i

ds
+

N−1
∑

I=1

1

2

∆εI
εk

1 − dI/ds

dI

and we define the normalized probabilities

n
(1)
i = N (1)

i /N and n
(2)
I = N (2)

I /N

and these are the associated probabilities of sampling each of the surface segments Σis and σIs.

A uniform random number is drawn ξ ∈ (0, 1], and according to the above probabilities we

decide which surface segment is to be sampled. If it is one of the spherical segments, we sample a

point on that section according to the density

w
(1)
i =

1

2π

ds

d̄i=1 − d̄i
sin θ

otherwise if it is on the interface segments, then we sample a point on the circular disc according
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to the density

w
(2)
I (`, φ) =

1

2π

dI

1 − dI/ds

`

(d2
I + `2)3/2

If the interface section σI is sampled then sign[−∆εI d̄I ] is accumulated for the wight. This intro-

duces a sign problem as discussed in Appendix A.7.

From then on the walk repeats itself until convergence on the external surface where the ap-

plied potential is sampled with the appropriate weight accumulated along the path. All other

considerations are same as that of the basic WOS algorithm described in chapter 2.
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5.6 Singlet-Triplet Splitting

Singlet-triplet splitting in the double dot structure is an important characteristic to study beacause

of potential applications in quantum computing. For operational purposes the register of a quantum

computer needs to be initialized, i.e. all the spins have to be aligned (up or down). But the ground

state of a two electron system for a local Hamiltonian is guaranteed to be a singlet by the Perron-

Frobenius theorem [16]. Hence, to carry out quantum computation by means of this double dot

structure, we need to induce a singlet to triplet transition by manipulating the bias of the surface

gates (namely PL and PR in Fig.(5.1)). This can be accomplished by tuning the gates such that the

singlet and triplet are degenerate. The goal of the simulations is to determine the corresponding

bias configuration.

The operational configuration of the device was as follows: (referring to Fig.(5.1) QPC-L,QPC-

R at -0.7V, L,R at -0.7V, and T,M at -0.5V. The sweeping voltage is the bias applied to gates PL

and PR, they are both at the same voltage.

DFT calculations (obtained from the CEG group [49]) as described in section 5.2 are shown

in Fig.(5.9). The problem with the calculation is that in the range −0.5V to −0.9V , the gap

is negative, i.e. triplet is lower than singlet, an unphysical result. Hence the need for more

accurate QMC calculations. The DFT solution provides a good starting point for construction of

the trial wave-functions, but the functions obtained from the above calculations were not sufficinetly

smooth at small values, (showed oscillations at O(10−8) times the peak value). This is negligiible

for integration schemes, but QMC uses the gradient of the wave-function and this is problematic

especially since the region of oscillation is very close to the peak of the wave-function.

Trial wave-functions as described in section 5.4 were used. DMC calculations using the Hamil-

tonian in Eq.(5.2) showed a gap (shown in blue in Fig.(5.9)) about double of that obtained using

DFT , but the gap remained positive as required from theoretical considerations [16]. Fig.(5.9)

shows that the double well coalesces into a single well as the magnitude of the gate bias increases;

the barrier vanishes at around a bias of −1.5V . In literature [73] this gap has been estimated by

Hartree-Fock methods to be around 0.4 meV for a two center 2D oscillator dot model. Given the

difference in geometry, our result of about 0.7 meV is reasonable.

The above calculation used the converged potential solution from the DFT calculations as a
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Figure 5.9: The singlet-triplet splitting curves with respect to the sweeping voltage i.e. the bias
in the gates PL and PR in Fig.(5.1). The DFT gap goes becomes negative at small bias, i.e. the
singlet higher than triplet. But the DMC result shows that the gap always remains positive. In
blue is the DMC result where the electronic interaction is taken to be 1/εr. In red is another DMC
calculation, where only the electronic interaction is computed by WOS. The green dots are from
a full WOS calculation. The DFT data was provided by the Computational Electronics Group
(CEG) [49].

rigid external potential Vext, but the total potential energy can be calculated using WOS. The

data points marked DMC-WOS in Fig.(5.9) show the gap obtained by using the Hamiltonian of

Eq.(5.3). This takes into account the full electronic interaction while infering the external potential

from boundary conditions. However, this poses some difficulties. Each of the points in Fig.(5.8)

took about 5 million runs to estimate. Hence to have a reasonable estimate of the variance to use

in the branching of DMC we still need a very large number of runs. As seen from Table (5.2), we

used only 200 runners per walker and still this was extremely slow leading to a very large variance

in the estimate.

The DMC calculation is expensive primarily due to the non-linear branching term, so a reason-
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eV.

ably accurate estimate of the branching term will allow the use of WOS to account for the correct

electronic interaction. Consider a potential V = Vext + V
(1/r)
ee , constructed from the external po-

tential and a 1/εr interaction as used for the previous DMC calculation. A calculation using this

energy to branch and use V = VWOS as the estimator for potential energy will show the same

convergence properties as the previous calculation.

We however take a slightly different approach. The physics of the potential essentially consists

of two parts, the external potential and the electronic interaction. Though the external potential

can be infered by WOS from the boundary conditions, this is the main contribution to the variance.

Hence, using a potential of the form V = Vext + V
(wos)
ee , where only the electronic interaction is

calculated by WOS would have much better convergence than the full DMC-WOS calculation. The

assumption which makes this calculation work is that the electrons do not significantly modify the

environment which remains fixed, it is only the image charges which react instantly to variations

in the electronic density and hence modify the interaction. This calculation is shown in red in

Fig.(5.9).

To understand the effect of the electronic interaction we next compare the electronic interaction
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Potential Walkers Runners Steps Blocks Time/Block Processors Total Time
type /Walker (sec) (hrs)

Vext + 1/r 103 − 2 · 102 103 1.02 8 2.26
Vext + V ee

WOS 103 5 2 · 102 103 10.81 8 24.01
VWOS 2 · 102 2 · 102 102 50 3 · 103 8 335

Table 5.2: A comparison of run times for calcualtion. The first row denotes the calculation using
the external potential with the 1/r interaction. The second row denotes the calculations using the
external potential but with the interaction calculated by the WOS method. The last row denotes
the calculations where the entire potential is calculated by the WOS method. As seen from the
numbers, the full DMC-WOS calculation is extremely time consuming

of the two calculations in Fig(5.10). We plot the difference of the singlet and triplet 1/εr interaction

along the x-axis and the same for V
(wos)
ee along the y-axis. In other words, we plot the quantities

V triplet
ee (1/r) − V singlet

ee (1/r), and V triplet
ee (wos) − V singlet

ee (wos).

So this is the difference in the contribution of the electronic interactions and not the difference in

the total energy which is shown in Fig.(5.9).

If the two contributions were identical, then they would lie on the dashed line. However, we see

that the magnitude of the difference of the interaction when calculated by WOS is slightly smaller

than that when computed by the 1/εr model because of the induced charge effects.

Also note that the difference in the interactions are negative. This is because in the singlet

the electrons have opposite spin, and hence are closer together, and hence the interaction energy

is higher than in the triplet where the same spin keeps the electrons apart.

The calculations were performed on the NCSA Tungsten cluster which is a dual processor Dell

PowerEdge 1750 server with 3GB ECC DDR SDRAM memory with 1280 compute nodes and Intel

Xeon 3.2 GHz(32-bit) processors.

75



Chapter 6

Conclusions

The main conclusions of this thesis has been the following

1. We have implemented quantum Monte Carlo calculations where the potential is computed

simultaneously by another Monte Carlo algorithm. We have adapted the “Walk On Spheres”

algorithm for the purpose of stochastically solving the Poisson equation. In this thesis we

have laid out the principles behind the algorithm and further adapted it to suit different

device geometries and dielectric media.

2. We have demonstrated the compatibility of the two Monte Carlo methods by studying a toy

problem, that of measuring the polarizability of helium atom, by placing it within the plates

of an infinite capacitor. We have also adapted and modified the penalty method to allow

diffusion Monte Carlo to accept the stochastic potential.

3. We have performed Monte Carlo calculations on a realistic model obtained from the Com-

putational Electronics Group [49]. We have used their DFT solutions as input to the QMC

calculation, and found the singlet-triplet gap to remain positive even at low bias.

4. We have demonstrated the general applicability of this method by applying it to a realistic

model of a semiconductor heterostructure. Different algorithms can be developed to improve

efficiency. We have measured the singlet-triplet splitting of the laterally coupled double

quantum dot for two electron occupancy. We have carried out this measurement in several

ways. Firstly, using the external potential with an 1/r inter-electronic interaction. Secondly,

by the full QMC-WOS method, and finally using the external potential, but evaluating the

electronic interaction by WOS.
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5. We found that the completely generic model can become very expensive. Better results can

be obtained if we use the confining potential but compute the modified electronic interaction

by WOS.

6. We conclude that this method has great potential to be useful in systems where the dielectric

mismatch plays an important role, like spherical quantum dots. For feasibility of calculations

it is also important to have a good approximation to the wave-function, since otherwise the

variational calculations are not reliable.

77



Appendix A

Sampling Distributions

A.1 Probability: definitions

Much of the material in the following sections can be found in [39]. We present them here for

completeness and to facilitate understanding of the sampling methods extensively used in the

algorithms discussed in this thesis.

Given an event with a countable set of random outcomes {E} ≡ {E1, E2, . . . , } there is associated

with each possible outcome Ei a positive number called probability, pi, i.e. P(Ei) = pi, which must

lie in the range

0 ≤ pi ≤ 1 ∀ i

If the k-th event never occurs, pi = 0, if it is sure to occur pi = 1. If the set {Ei} is exhaustive, then

∑

pi = 1, i.e. at least one of the k events is bound to occur. This property is called normalization.

In the following we shall assume that for every outcome Ei, there is a real number xi which can

be called a random variable. The expectation of this random variable x, i.e. the stochastic mean

value is defines as

E(x) =
∑

i

pixi ≡ 〈x〉 ≡ µ

and the variance is given by

var{x} = 〈(x− µ)2〉 = 〈x2〉 − 〈x〉2.

The square root of the variance is a measure of the dispersion of the random variable, this is
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Figure A.1: The rejection technique. ξ1 is accepted and ξ2 is rejected.

also called the standard deviation. These discussions can be carried over from the discrete to the

continuous case where the sums are simply replaced by integrals.

A.2 Methods of Sampling Standard Distributions

We will take it for granted that there exists codes to generate pseudo-random numbers uniformly

distributed in the range (0, 1]. Given this our task is to generate a set of random numbers {xi}

distributed according to f(x). We will deal primarily with one dimensional distributions for which

this means

P{xk ∈ (a, b)} =

∫ b

a
f(x)dx, 0 < a < b < 1

We will discuss only two methods of sampling, rejection and transformation.

A.2.1 Rejection

The idea behind the rejection technique is very simple, a trial value x0 for a random variable x is

selected and proposed. This value is subjected to one or more tests, and it maybe accepted, that is

used as needed, or rejected. The test is accomplished by accepting x0 with probability proportional

to f(x0). For the distribution in Fig.(A.1), after the trial point x0 is proposed, a random number

ξ ∈ (0, 1] is sampled. x0 is accepted if ξ ≤ f(x0/f(0) for the function in Fig.(A.1), and rejected

otherwise.

If it is rejected, the cycle of choosing and testing a trial value is repeated until an acceptance
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takes place. An important property of this technique is that the normalization of the density need

not be known explicitly to carry out the sampling. The difficulty is that if a large number of trials

are rejected, then the method become extremely inefficient.

A.2.2 Transformation of Random Variables

Suppose that x, (xi < x < xf ) is a random variable with a probability density function (pdf) fX(x)

(
∫ xf

xi
fX(x)dx = 1)and a cumulative distribution function (cdf) given by

FX(x) =

∫ x

xi

fX(x)dx

and that y ≡ y(x) is a continuous non-decreasing function of x. The question is, what is FY (y)?

The variable x and the function y(x) map into each other

y(X) ≤ y(x) iff X ≤ x

so the probabilities become

P{y(X) = Y ≤ y(x)} = P{X ≤ x}

or

FY (y) = FX(x) where y = y(x).

The relationship between the probability distribution functions maybe determined by differentiating

the above equation

fY (y)
dy

dx
= fX(x)

If y(x) is a non-increasing function of x, then

P{y(X) = y(x)} = P{X ≥ x} = 1 − P{X < x}

since

P{X ≥ x} + P{X < x} = 1.
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The c.d.f. for y is therefore

FY (y) = 1 − FX(x)

and

fY (y)
dy

dx
= −fX(x)

These can be combined to state

|fX(x)dx| = |fY (y)dy|

reflecting the fact that all the values of x in dx map into values of y in dy.

Now, if ξ is uniform, its cdf is

Fξ(ξ) =























0, ξ < 0

ξ, 0 ≤ ξ ≤ 1

1, ξ ≥ 1

Therefore on (0, 1] the cdf for y is determined by solving the equation

FY (y) = ξ

We will be using this equation repeatedly.
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A.3 Sampling a Normal Distribution

A normal variable with mean zero and variance one, denoted by N(0, 1), is distributed according

to

ϕ(x|0, 1) =
1√
2π

exp

(

−1

2
x2

)

, −∞ < x <∞ (A.1)

A variable distributed according to N(µ, σ2) is obtained easily from

ϕ(x|µ, σ2) = µ+ σϕ(x|0, 1)

Hence it is sufficient to demonstrate methods of generating standard normal variates, i.e. variables

distributed according to N(0, 1).

Consider another variable y distributed normally according to Eq.(A.1), and multiply this to

the distribution for x to obtain

ϕ(x)ϕ(y)dxdy =
1

2π
exp

(

−x
2 + y2

2

)

dxdy =

[

exp

(

−1

2
r2
)

rdr

][

dφ

2π

]

where we have transformed the variables to polar cöordinate r and φ where 0 ≤ r < ∞ and

0 ≤ φ ≤ 2π. We note in passing that the integral
∫∞
0 exp[−r2/2]rdr = 1, and hence both the

expressions with square brackets in the above equation can be considered as probability densities.

So two independent random numbers distributed normally can be obtained simultaneously as

follows. Draw two random numbers ξ1 and ξ2, ξ ∈ (0, 1]. Set φ = 2πξ2, thus sampling φ uniformly

in the range (0, 2π].

For the expression in r, the cumulative distribution function is given by

FR(r) =

∫ r

0
exp[−u2/2]udu = 1 − exp[−r2/2] = ξ

Inverting the equation,

r = [−2 log(1 − ξ)]1/2 ≡ [−2 log ξ1]
1/2
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since both ξ and 1 − ξ are distributed uniformly in (0, 1]. Putting it all together

x = [−2 log ξ1]
1/2 cos(2πξ2)

y = [−2 log ξ1]
1/2 sin(2πξ2).

this is known as the Box-Muller method, though this was first invented by Wiener.

An approximate normal random variable may also be generated by invoking the central limit

theorem. By sampling N uniform random variables ξ1, ξ2, . . . , ξN and forming the sum

x =

√

12

N

(

N
∑

k=1

ξk − N

2

)

a variable of mean zero and variance one is generated. The central limit theorem asserts that this

will be nearly normal for large N . A value of N = 12 appears to be sufficiently large for many

purposes and avoids the evaluation of the factor
√

12/N .

A.4 Sampling Uniformly on a Spherical Surface

Given a point P (x, y, z) we want to uniformly sample a point P ′ on the surface of a sphere of radius

d centered at P . This can be done in two different ways. The simplest approach is to look at the

normalized differential form
[

sin θ

2
dθ

] [

dφ

2π

]

hence we sample φ uniformly in the range (0, 2π] as described before. For θ the cumulative distri-

bution function is given by

FΘ(θ) =

∫ θ

0

sin θ

2
dθ =

1

2
(1 − cos θ) = ξ

inverting the equation

cos θ = 1 − 2ξ
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The new point can be generated as follows

P ′(x) = P (x) + 2d
√

ξ1(1 − ξ1) cos[2πξ2]

P ′(y) = P (y) + 2d
√

ξ1(1 − ξ1) sin[2πξ2]

P ′(z) = P (z) + d(1 − 2ξ1)

Another simple way of generating points uniformly on the surface of a sphere is suggested by

Muller [54]. Construct a vector a = (X1, X2, X3) where X ∈ N(0, 1). Normalize the vector, i.e.

a/a where a = |a|. Scale it up to the length of the radius of the sphere, i.e. da/a.

P ′ = P + da/a

is distributed uniformly on the surface of the sphere of radius d centered at P .

A.5 Monte Carlo Integration

If we want to evaluate an integral of the form

G =

∫

g(X)f(X)dX

where

f(X) ≥ 0,

∫

f(x)dX = 1

then the following game of chance may be used to make numerical estimates. We draw variables

X1, X2, . . . , XN from f(X) and form the arithmetic mean

GN =
1

N

∑

i

g(Xi)
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A.6 Variance Reduction: Importance Sampling

Suppose we have an n-dimensional integral

G =

∫

g(X)f(X)dX

that we wish to evaluate. The function f(X) is not necessarily the pdf to use in a Monte Carlo

calculation even though it appears in the integrand. A different pdf, f̃(X) can be introduced into

the integral as follows:

G =

∫
[

g(X)f(X)

f̃(X)

]

f̃(X)dX

where

f̃(x) ≥ 0,

∫

f̃(X)dX = 1

and g(X)f(X)/f̃ (X) <∞ except perhaps on a (countable) set of points. The variance is minimized

when

f̃(X) =
g(X)f(X)

G
,

i.e. if we already know the correct answer G, the Monte Carlo calculation will certainly give it back

with zero variance! This corresponds to the minimum variance calculation. Although in practice we

can not use f̃(X) as prescribed above, we expect that “similar” functions will reduce the variance.

A.7 Sampling a Sum of Terms

To understand how to sample a complicated expression like Eq.(5.12) we study a few simple exam-

ples.

Example 1. Consider the following expression

T = W1A1 +W2A2 −W3A3, Ai,Wi > 0,∀i

We want to sample T, by sampling the Ai terms. Define the following

N =
∑

Wi wi = Wi/N A′
i = NAi
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Thus,

T = w1(A
′
1) + w2(A

′
2) + w1(−A′

3)

now the wis can be treated as normalized probabilities (
∑

wi = 1). Pick a uniform random number

ξ, ξ ∈ (0, 1], if ξ < w1, sample A′
1, else if ξ < (w1 + w2), sample A′

2, else sample −A′
3. Averaging

over many such samples will give an estimate of T . Generalization to larger number of terms is

obvious.

A Sign Problem

The error in the estimate of T suffers from the sign problem, due to the negative sign in front of

the W3A3 term. This is seen from the variance of the sampling.

var[T ] = 〈T 2〉 − 〈T 〉2; where 〈T 2〉 = w1A
′2
1 + w2A

′2
2 + w3A

′2
3

Thus,

var[T ] = [w1A
′2
1 + w2A

′2
2 + w3A

′2
3 ] − [w1A

′
1 + w2A

′
2 − w3A

′
3]

2

= w1(1 − w1)A
′2
1 + w2(1 − w2)A

′2
2 + w3(1 − w3)A

′2
3 − 2w1w2A

′
1A

′
2

+ 2w3A
′
3[w1A

′
1 + w2A

′
2]

Note that 0 < wi < 1. The negative contribution from A3 in T leads to the last positive term in

the above expression which leads to a higher variance, hence larger error in the estimate. This is

the sign problem, if the negative contribution is large, the signal will disappear in the noise. Thus

to sample T efficiently we need w3 � 1.

Example 2. Now suppose that each term is itself an integral

T =
∑

i

∫

Li

dx SiWi(x)Ai(x) (A.2)
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where Si is the sign of the term i.e. ±1, and each integral is over a different interval. Sampling of

this expression proceeds exactly as above. Define the following

Ni =

∫

Li

dxWi(x), N =
∑

i

Ni, ni = Ni/N , wi = Wi/Ni, A′
i(x) = NSiAi(x)

Thus,

T =
∑

i

ni

∫

Li

dx wi(x)[SiA
′
i(x)] =

∑

i

niTi

Now, the nis are normalized by construction, i.e.
∑

ni = 1, and hence can be used as probabilities.

Just as in the previous example, we draw a random number ξ, to decide which term Ti to sample.

Then its simply a matter of sampling xk for the normalized distribution wi(x), and collecting the

term SiA
′
i(xk).

A.8 Sampling Eq.(5.12).

Sampling of this equation proceeds along the ideas mentioned above. The first step is to calculate

the Ni like terms,

N (1)
i =

εi
εk

∫ θi

θi+1

sin θ
dθ

2

∫ 2π

0

dφ

2π
=

1

2

εi
εk

(cos θi+1 − cos θi), ∀ i = 0, . . . , N − 1

=
1

2

εi
εk

d̄i+1 − d̄i

ds

and,

N (2)
I =

1

2

∆εI
εk

d̄I

∫ 2π

0

dφ

2π

∫ LI

0

`d`

(d2
I + `2)3/2

; LI =
√

d2
s − d2

I , ∀ I = 1, . . . , N − 1

=
1

2

∆εI
εk

d̄I

[

1

2

∫ d2
s

d2
I

dα

α3/2

]

, where α = d2
I + `2

=
1

2

∆εI
εk

d̄I

[

1√
α

]dI

ds

=
1

2

∆εI
εk

d̄I
1 − dI/ds

dI

Thus the total weight becomes

N =
N−1
∑

i=0

1

2

εi
εk

d̄i+1 − d̄i

ds
+

N−1
∑

I=1

1

2

∆εI
εk

d̄I
1 − dI/ds

dI
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As before define n
(1)
i = N (1)

i /N etc., and

w
(1)
i (θ, φ) =

ds

d̄i+1 − d̄i

1

2π
sin θ, w

(2)
I (`, φ) =

1

2π

dI

1 − dI/ds

`

(d2
I + `2)3/2

Hence Eq.(5.12) is reduced to the form

G(r,Rs+1) = GD(Rs, r) +

N−1
∑

i=0

n
(1)
i

∫ θi

θi+1

dθ

∫ 2π

0
dφ w

(1)
i (θ, φ)[SiNG(rs,Rs+1)]

+

N−1
∑

I=1

n
(2)
I

∫ LI

0
d`

∫ 2π

0
dφ w

(2)
I (`, φ)[SING(rI ,Rs+1)]

(A.3)

where Si = 1, ∀ i, and SI = sign[−∆εI d̄I ]. So we just need to know how to sample the wis. We

note that for either of the ws the φ dependence is rather simple.

1 =

∫

wi(β, φ)dβdφ, β = either θ or `

=

∫

β
ωi(β)dβ

∫ 2π

0

dφ

2π
, ωi(β) = wi(β, φ)/2π

This implies that we can simply sample φ uniformly between 0 and 2π, i.e. sample a random number

ξ ∈ (0, 1], and φ = 2πξ.

So we need to sample from the p.d.f. ωi(θ). We know

ds

d̄i+1 − d̄i

∫ θi

θi+1

sin θdθ = 1

We can sample θ from this by solving

ds

d̄i+1 − d̄i

∫ θ

θi+1

sin θdθ = ξ

or,

ds

d̄i+1 − d̄i

∫ d̄i+1/ds

cos θ
d[cos θ] =

ds

d̄i+1 − d̄i

[

d̄i+1

ds
− cos θ

]

= ξ

solving

cos θ = (1 − ξ)Di+1 + ξDi
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where Di ≡ d̄i/ds, the difference of the center from the interface scaled by the domain radius.

The other p.d.f. can be sampled in a similar fashion by solving for ` from

dI

1 − dI/ds

∫ `

0

`d`

(d2
I + `2)3/2

= ξ

Solving this we get,

` = dsDI

[

1

[1 − (1 − DI)ξ]2
− 1

]1/2

This completes the description of sampling Eq.(5.12).
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Appendix B

The WOS Algorithm

The “Walk On Spheres” algorithm can be summed up by the following algorithm.

1. Initialize the runner at the point where the potential is required.

2. Determine the radius of the maximum sphere

3. Obtain the contribution from the first domain.

4. Uniformly sample the surface of the domain.

5. Determine if on/near the external surface.

If on surface collect boundary value.

while(not on surface)

(a) Determine radius of maximum sphere

(b) Obtain domain contribution.

(c) Walk On Spheres.

(d) check if on surface.

6. Collect the entire contribution from the walk.

7. Loop over the walk and particles.

8. Obtain averages and statistics.
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This is the generic algorithm, for any specific geometry, the algorithm to determine the radius

of the maximum sphere has to be written. Also the sampling of the domain surface may be altered

to account for different dielectric media.
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Appendix C

Overture to Spherical Quantum Dots

The QMC-WOS method will be particularly applicable to cases where the potential profile is diffi-

cult to estimate a priori without the knowledge of the charge density. This is particularly true for

a certain type of spherical quantum dots. Recent research has shown [24] that the addition energy

spectrum of these spherical dots is highly dependent on the dielectric constant of the surround-

ing medium. We follow this article to emphasize some key points, and propose the application of

QMC-WOS to this system.

Recent experiments have allowed the observation of atom like electronic states in strongly-

confined semiconductor quantum dots. In these experiments a scanning tunneling microscope

(STM) tip is positioned above a specific dot, and the tunneling current-voltage spectrum is acquired

by applying a voltage bias between the STM tip and the substrate. The conductance shows a series

of peaks which correspond to the electron and hole charging energies. This addition spectrum

depends profoundly on the dielectric environment [5]. Indeed semiconductor dots are now made with

dielectric coatings: organic molecules, other semiconductors, or glasses. Theoretical understanding

of the effect of these media will greatly influence the engineering of such devices.

Consider the dot represented in Fig.(C.1), where a spherical dot of dielectric constant ε in is

embedded within a material of dielectric εout, in the presence of the STM tip (not shown in figure.)

The initial configuration of the system, with energy E0 consists of a neutral dot in the ground state.

The charging energy is given by

µ1 ≡ E1 −E0 = εel + Σpol
pol
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Figure C.1: Process of loading an electron into an otherwise neutral quantum dot

where E1 is the total energy of the system with one additional electron, εel is the single-particle

level with respect to the reference energy, and Σpol
pol is the self-energy of the additional electron

interacting with its own image charge created by the dielectric mismatch at the dot surface. The

charging of the second electron will involve the coulomb repulsion which will be the sum of the

direct repulsion between the electrons and the polarization contribution arising from the interaction

between one electron with the image of the other.

Franceschetti et al [24] carries out atomistic pseudopotential calculations by solving the Poisson

equation and the self-energy polarization contribution from the difference of the Green’s functions

Vpol(r) = limr′−→r[G(r, r′) −Gbulk(r, r
′)].

Applying QMC-WOS to such systems will be straightforward, we do not have to worry about

all the different contributions to the potential, WOS will simply compute the entire potential for

us. Also the self-energy polarization term above is simply built into the framework of WOS. The

calculations of Franceschetti et al demonstrates that when εout � εin, the electron-electron and

electron-hole interactions are dominated by the surface polarization effects. Thus an exact model

of the spherical dot becomes extremely relevant to the problem.

Here we briefly outline a method of evaluating the interaction in the presence of the spherical

dot. The exact analytic solution is rather complicated, and the method of images produces a line

charge and not a point. However the WOS algorithm is particularly simple and well suited for the

purpose.
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STM

Figure C.2: WOS algorithm for the spherical dot

Divide the dot into two regions by a sphere which has half the radius of the dot. For any point

within this sphere (marked by dashed line in Fig.(C.2)), we can use the interpolating technique

described in section 2.7.1. Outside this sphere we have to use the regular WOS walk. So for

the point shown in the figure we can construct a domain which coincides with the dot, and so

on the very first step the walk reaches the dot surface. Here, a small skin region determines the

radius of the next domain, and the ratio of the dielectrics determine the transmission or reflection

probabilities. If reflected the walk continues by the basic algorithm, if it enters the inner sphere we

can use the off-centered domains (and accumulate the corresponding weight), otherwise the walk

will simply converge on the dot surface, pass through and continue toward the external boundary

of which the STM tip is a part (as shown in the figure).
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Appendix D

Effective Units

The Schrödinger equation in SI units is

[

− }
2

2me
∇2 − e2

4πε0

1

r

]

ψ(r) = Eψ(r). (D.1)

To transform this equation into dimensionless form, we scale the variables by λ (r → λr ′), the

above equation becomes

[

− }
2

2me

1

λ2
∇′2 − e2

4πε0

1

λr′

]

ψ′(r′) = Eψ′(r′). (D.2)

In order to factor out the constants in front of the kinetic and potential terms, we have to set

}
2

me

1

λ2
=

e2

4πε0

1

λ
= Eα

The value of the scaling factor which allows for this factorization to be possible is

λ =
}

2/me

e2/(4πε0)

Setting E ′ = E/Eα, we can rewrite the Schrödinger equation in atomic units

[

−1

2
∇2 − 1

r

]

ψ′(r) = E′ψ′(r).
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This is equivalent to setting } = e2/(4πε0) = me = 1, and scaling the length scale r and energy E ′

to the atomic units of Bohr radius and Hartree respectively. Thus

Ha =
mee

4

(4πε0)2}2
= 27.211eV

and

a0 =
}

2/me

e2/(4πε0)
= 0.52918Å.

If the system is some material in which the relative permittivity is ε and the electron has an effective

mass of m?me instead of that in vacuum, then these length and energy units scale differently and we

have to use the effective units instead of the atomic units to properly represent the scales involved

in the problem. It is easy to see that by replacing ε0 → εε0 and me → m?me we get

a?
0 =

ε

m?
a0

and

Ha? =
m?

ε2
Ha
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Appendix E

Cubic Splines

The interpolation problem can be stated as follows. Given n+ 1 points (xi, yi) for i = 0 . . . n, find

a (smooth) function g(x) satisfying

g(xi) = yi. i = 0, . . . , n.

Obviously, an arbitrarily large number of functions could be constructed to satisfy the above con-

strains. For practical purposes, g(x) should be a function that is inexpensive to compute; polyno-

mials turn out to be a very efficient choice, i.e. g(x) ≡ pn(x) a polynomial of degree n.

We will first introduce a specialized problem for ease of understanding the spline interpolation.

The following is a cubic Hermite interpolation, is easier to understand, and we will develop the

cubic spline scheme based on the ideas developed here.

Let x1 < x2. Given y(xi) = f(xi), i = 1, 2, i.e. the values of the function f(x) at points x1 and

x2, let’s solve a very special case:

Find a cubic polynomial P (x) such that

P (x1) = f(x1), P
′(x1) = f ′(x1), P (x2) = f(x2), P

′(x2) = f ′(x2). (E.1)

In other words, we want to find a polynomial P (x) which not only fits the functional values f(x) at

the two points x1 and x2, but also the derivative f ′(x) at those two points. So the polynomial has

to satisfy four conditions. To solve this we use the approach of Lagrange; the idea is to consider

the special data sets first and find the so called “fundamental polynomials”. So let’s first find P1
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such that

P1(x1) = 1, P ′
1(x1) = 0, P1(x2) = 0, P ′

1(x2) = 0. (E.2)

Since P1(x) has a double zero at x2 and an extrema at x1, we consider a product form that is linear

in x1 and quadratic in x2. Thus P1(x) = (x − x2)
2[a + b(x − x1)] for some a And b. Now fitting

the above conditions on P1(x) we find a = 1/(x1 − x2)
2 and b = −2/(x1 − x2)

3.

Similarly we define three more polynomials, each to appropriately account for each of the

conditions in Eq.(E.1), for example Q1 is defined by

Q1(x1) = 0, Q′
1(x1) = 1, Q1(x2) = 0, Q′

1(x2) = 0.

and Q1(x) = a(x − x1)
2(x − x1). So Pi(x) fits the function at xi, and Qi(x) fits the derivative at

xi, for i = 1, 2. So the polynomial P (x) can be expressed as

P (x) = f(x1)P1(x) + f ′(x1)Q1(x) + f(x2)P2(x) + f ′(x2)Q2(x). (E.3)

So from the above equation we see that

(x− x1)
2, (x− x1)

2(x− x2), (x − x2)
2, (x− x2)

2(x− x1)

is a good basis for cubic Hermite interpolation. Redefine h = x2 − x1, and t = (x− x1)/h, and we

can simplify the expressions

P (x) = f(x1)p1(t) + f(x2)p2(t) + h[f ′(x1)q1(t) + f ′(x2)q2(t)],

with

p1(t) = (t− 1)2(1 + 2t), q1(t) = t(t− 1)2

and

p2(t) = t2(3 − 2t), q2(t) = t2(t− 1).

These will be very useful in the discussion of splines. In Fig.(E.1) we plot these functions. Extending
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Figure E.1: The polynomial basis functions for interpolation. The range [x1, x2] has been mapped
into [0, 1] with the choice of the parameter t. Note the properties of these functions; p1(t) is 1 at
0 and 0 at 1, conversely for p2(t). As for the qi(t) functions, their derivative vanishes at one of the
ends.

the above idea of interpolation between two points to an arbitrary range [x1, xk], we can construct

a piecewise cubic Hermite interpolation. It has the following properties

1. The interpolating function s(xi) equals the given functional value y(xi) at every data point

xi, i.e. s(xi) = y(xi) ∀i = 1, . . . , k

2. s(x) is singly differentiable in the range [x1, xk].

3. s(x) coincides with a cubic polynomial on every subinterval [xi−1, xi] ∀ i = 1, . . . , k.

E.1 Cubic Splines

The cubic splines have the same properties as above, except that we require that the interpolating

function be doubly differentiable over the entire range, unlike the Hermite interpolation where it is

only singly differentiable.

So if we require

s(xi) = yi, i = 0, . . . , k

then there are k+1 interpolation conditions, and we need to impose two more (linear) independent

boundary conditions to achieve uniqueness. The commonly used boundary conditions are
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1. s′′(x0) = s′′(xk) = 0. (natural spline) In this case we assume that the second derivative

vanishes at either end point.

2. s′(x0) = y′0, s
′(xk) = y′k (complete spline), we fit the first derivative at the end points.

and there can be many other boundary conditions like “periodic” or “not-a-knot”, but we primarily

focus on the natural spline, vanishing second derivative is a sufficiently good assumption for our

purposes.

We will be computing the interpolating cubic splines by the method of the m-relations which

is a very efficient numerical algorithm. Note that a spline s(x) is also a piecewise cubic Hermite

interpolating functions. Hence the spline s(x) can also be expressed in the form

s(x) = yi−1p1(t) + yip2(t) + hi[mi−1q1(t) +miq2(t)], (E.4)

where t and hi are as described before and mi = s′(xi) ∀ i = 0, . . . , k represents the first derivative

at each point. The problem thus boils down to determining the mis at each point.

To find the mis, we can use the continuity of s′′(x) at each xi for i = 1, . . . , k−1. Differentiating

Eq.(E.4) and after some algebra we find that

s′′ = yi−1
12t− 6

h2
i

+ yi
6 − 12t

h2
i

+mi−1(1 − 4t+ 3t2) +mit(3t− 2), x ∈ [xi−1, xi].

Therefore,

s′′(x−i ) = yi−1
6

h2
i

+ yi
−6

h2
i

+mi−1
2

hi
+mi

4

hi
, i = 1, . . . , k

and

s′′(x+
i ) = yi−1

−6

h2
i

+ yi
6

h2
i

+mi−1
−4

hi
+mi

−2

hi
, i = 0, . . . , k − 1.

Now from the continuity of the second derivative (a requirement for the spline) we equate the two,

i.e. s′′(x−i ) = s′′(x+
i ) and rearranging in terms of the unknown mis we get

λimi−1 + 2mi + µimi+1 = 3λi
yi − yi−1

hi
+ 3µi

yi+1 − yi

hi+1
, i = 1, . . . , k − 1.

where λi = hi+1/(hi + hi+1) and µi = 1 − λi for all interior points xi, i = 1, . . . , k − 1.
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Now we can use the boundary condition for the natural splines, and set the second derivative at

the two end points to zero. These will give us two additional equations. This can be summarized by

k+ 1 equations which can be solved by simple linear algebra techniques like Gaussian elimination.

These can be rewritten in a more illustrative form:

2m0 + m1 = d0

λ1m0 + 2m1 + µ1m2 = d1

λ2m1 + 2m2 + µ2m3 = d2

. . .

λk−1mk−2 + 2mk−1 + µk−1mk = dk−1

mk−1 + 2mk = dk

with

d0 = 3
y1 − y0

h1
, dk = 3

yk − yk−1

hk
,

and

di = 3λi
yi − yi−1

hi
+ 3µi

yi+1 − yi

hi+1

E.2 TriCubic Splines

Interpolation in three dimensions will follow exactly similar approach, except that we have to

account for the cross derivatives as well. In a rectangular grid, the tricubic splines will satisfy the

following conditions:

1. S(r) is a cubic polynomial in r:

S(r) =

3
∑

l,m,n=0

a
(i,j,k)
l,m,n (x− xi)

l(y − yj)
m(z − zk)

n

2. S(r) is doubly differentiable, i.e. the following functions are continuous:

∂α+β+γS(r)

∂xα∂yβ∂zγ
, α, β = 0, 1, 2
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Thus the interpolation condition involves 64 coefficients at each point, namely the values of the

following terms

f,
∂f

∂x
,
∂f

∂y
,
∂f

∂z
,
∂2f

∂x∂y
,
∂2f

∂y∂z
,
∂2f

∂x∂z
,

∂3f

∂x∂y∂z

evaluated at each point. Hence the value of the interpolating function S(x, y, z) at any point

r(x, y, z) is dependent on the above eight coefficients at each of the eight corner points of the cubic

grid the point r resides in, i.e. a total of 8× 8 = 64 coefficients in all. Then on each of these cubes,

we have 64 interpolation conditions for the 64 coefficients of the tricubic polynomial that represents

the tricubic spline. The same ideas of the piecewise cubic Hermite interpolation are used.

In the same notation as in the case of the Hermite polynomial, we define the following;

h
(x)
i = xi+1 − xi, h

(y)
j = yj+1 − yj, h

(z)
k (z) = zk+1 − zk

and three four-vectors

a(u) = [p1(u), p2(u), h
(x)
i q1(u), h

(x)
i q2(u)]

b(v) = [p1(v), p2(v), h
(y)
j q1(v), h

(y)
j q2(v)]

c(w) = [p1(w), p2(w), h
(z)
k q1(w), h

(z)
k q2(w)]

where

u = (x− xi)/h
(x)
i , v = (y − yj)/h

(y)
j , w = (z − zk)/h

(z)
k

Then we define a three tensor Fijk i, j, k = 0, . . . 3 which contains the 64 coefficients of the function

and its derivatives as described in the previous paragraph. For each of the indices, the values denote

the following.

0 = fi, 1 = fi+1, 2 = f ′i , 3 = f ′i+1

For example,

F013 =
∂f

∂z

∣

∣

∣

i,j+1,k+1
, F332 =

∂3f

∂x∂y∂z

∣

∣

∣

i+1,j+1,k
etc.
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With this notation the expression for the spline becomes simple

S(r) =

3
∑

i,j,k=0

Fijkai(u)bj(v)ck(w)

The m-derivatives are evaluates as follows. We start by evaluating all three first derivatives for

all the grid points following the method outlined for one dimensional splines. Then use these values

in the same matrix equation to calculate the second derivatives and so on. This needs to be done

only once at the beginning of the calculation, so when the actual interpolation is taking place, it

involves only the addition (and multiplication) of 64 terms.

E.3 Wave function and Derivatives

Since the second derivative of the cubic spline is continuous, these can be used to interpolate

tabulated orbital values and the kinetic energy computed from that interpolation will be continuous.

However the kinetic energy is guarantied to be not smooth.

First, we see that the spline S(r) depends on the coordinates only through the (u, v, w) param-

eters, and so we simply need to evaluate the derivative of the p and qs. This proves to be a simple

task.

Now consider the fact that the splines are cubic polynomials and so their second derivative will

be linear. This will imply a function which is continuous but not smooth, and hence the kinetic

energy (of the form −∇2Ψ/Ψ) is a piecewise smooth function divided by a smooth function will

have discontinuous derivatives. This is usually not a problem for diffusion Monte Carlo.
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