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Multiscale Modeling Methods for Materials Science

Multiscaling via Symbolic Regression

Overview
Multiscale simulations by coupling traditional methods have
proven inadequate because of the range of scales, detailed
information needed from finer scales, and the prohibitively
large numbers of variables then required. Thus, for multiscale
simulations (spatial and temporal) we must provide data from
finer (atomic) scales that is reliable, avoids the need for
determining "hidden variables" at various scales, and is
computational inexpensive.

Abstract
We employ Symbolic-Regression via Genetic-Programming – a
Genetic Algorithm that evolves computer programs – to
represent the atomic-scale details needed to simulate
processes at time and lengths pertinent to experiment, or
even to reveal pertinent correlations that determine the
relevant physics or chemistry at differing scales.

We provide three recent examples involving regression of:
 i)  constitutive behavior for an aluminum alloy,
 ii) diffusion barriers for multiscale kinetics on alloy surfaces,
iii) semi-empirical quantum-chemistry potentials that avoid potentially
irrelevant transition states but get excited-state reaction pathways.
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New Concepts and Methods for Modeling Complex Dynamical Systems

Genetic Programming is a genetic algorithm that
evolves computer programs, requiring:

Representation: programs represented by trees
  – Internal nodes contain  functions

• e.g., {+, -, *, /, ^, log, exp, sin, AND, if-then-else, for}

  – Leaf nodes contain terminals

• e.g., Problem variables, constants, Random numbers

Fitness function: Quality measure of the program

Population: Candidate programs (individuals)

Genetic operators:
  – Selection: “Survival of the fittest”.
  – Recombination: Combine parents to create offspring.

  – Mutation: Small random modification of offspring.

Goal: Evolve constitutive “law” between macroscopic
variables from stress-strain data with multiple strain-rates
for use in continuum finite-element modeling.

Flow stress vs. temperature-compensated strain rate for
AA7055 [Padilla, et al. (2004)].
• GP fits both low- and high-strain-rate data well.

– Automatic identification of transition point via a
complex relation, g, which models a step function.

• GP identifies “law” with two competing mechanisms

– 5-power law modeling creep mechanism
– 4-power law modeling as-yet-unknown mechanism.

1. Evolving Constitutive Relations

2. Multi-Timescale Kinetics Modeling

Goal: To advance dynamics simulation to experimentally
relevant time scales.

• Molecular Dynamic (MD) or Kinetic Monte Carlo (KMC)
based methods fall short 3–9 orders in real time.
– Unless ALL the diffusion barriers are known in Table.

– Table KMC has109 increase in “simulated time” over MD at
300K.

• Symbolically-Regressed KMC (sr-KMC)
– Use MD to get some barriers.
– Machine learn via GP all barriers as a regressed  in-line function call,
i.e. “table-look-up” KMC is replaced by function.

Application: Surface-vacancy-assisted migration in phase-
segregating CuxCo1-x
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Goal: Functional augmentation & rapid multi-objective re-
parameterization of semiempirical methods to obtain reliable
pathways for excited-state reaction chemistry.

• Ab Initio methods: accurate, highly expensive
• Semiempirical (SE) methods: approximate, inexpensive

– Reparameterization based on few ab initio data
– Involves optimization of multiple objectives, such as fitting
simultaneously limited ab initio energy and energy-gradients of
various chemical excited-states or conformations.
– Augmentation of functions may be needed

• Propose: Multi-objective GAs for reparameterization
– Obtain set of non-dominated solutions in parallel.
– Avoid potentially irrelevant pathways, arising from SE-forms.
– GP for functional augmentation, e.g., symbolic regression of core-
core repulsions.

3. On-Going:     Multiscale  Modeling in
Excited-State Reaction Chemistry

Semi-empirical potential parameterizations lead to
differing solutions, or competing solutions. Using
GA/GP we can find optimal potentials and avoid
pathways from dominating but irrelevant solutions.

• solution C is dominate over A.
• solutions A and B are non-dominate.

Summary
Symbolic regression via genetic programming (GP) is a robust method for
bridging methods across multiple scales. Unlike traditional regression
methods, symbolic regression via GP adaptively evolves both the
functional relation and regression constants for transferring key
information from finer to coarser scales, and is inherently parallel.

The present results indicate that GP-based symbolic regression is an
effective and promising tool for multiscaling. We believe that GP-based
symbolic regression holds promise in other multiscaling areas, such as
finding chemical reaction pathways mentioned above. Moreover, the
flexibility of GP makes it readily amenable to hybridization with other
multiscaling methods leading to enhanced scalability and applicability to
more complex problems.
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• GP predicts all barriers with 0.1–1% error using explicit
calculations for 3% of the barriers (0.3% with cluster expansion).

– Standard basis-set regression fails.

– sr-KMC approach provided, for this problem:
– 102 decrease in CPU time for barrier calculations.
– 103–106 less CPU time per time-step vs. on-the-fly methods.

• Could combine with pattern-recognition methods, or temperature-
accelerated MD, to model more complex cooperative dynamics.

Complex Dynamical Systems
Dynamical systems and their manifestations are ubiquitous in everyday
life, from earthquakes to weather changes, and in modern society, from
magnetic devices to nuclear reactors. These systems are intrinsically
complex because of the presence of long-range interactions and
non-linear dynamics, and often because of the presence of
nonequilibrium external forcing, e.g., by applying electrostatic field,
magnetic field, or by irradiation with energetic projectiles.

Our recent results focus on the connection between external noise (1),
and internal noise (3), on critical behavior and self-organization. We have
also devised a new experimental set-up for the study of fractals dynamics
(2). We have used computer simulations to elucidate the structure of
triblock copolymer gels (4).

2. Fractals in Electrochemical Systems

Two major difficulties in experimental studies of dynamics of fractals are:
 1) time scales are either too fast (as in dielectric breakdown) or too slow
(as in river formation)
 2) control of experimental parameters are out of the researchers’ hands.

We design a new model system by placing conductive  particles in a viscous
dielectric medium, to which an electrical field is applied. The mechanical
relaxation time scales become much slower than the electrical relaxation
time scales.  This experimental set-up resolves the two major issues
involved in studying dynamic fractal formation.

Relaxation sequence starting
from a compact initial condition:

Before time t =400s, the unconnected
particles form chains that compete to
reach the grounded electrode.

 After t = 400s, one of the chains meets
ground and all other chains quit reaching.
The network proceeds to form from the
single connected chain.

Networks formed are nearly space-filling,
with mass dimensions between 1.74
and 1.9.

3. Hysteresis, Noise, and Domain Wall 
Dynamics in Magnets

We investigate Crackling Noise – a jerky response to slowly varying force –
such as Barkhausen noise, superconducting vortex Avalanches, earthquakes,
and shape memory alloys. Such materials all respond to an external driving
force or field with crackling noise. We study universal, i.e. detail
independent, effects of parameters such as the field sweep rate on power
spectra of crackling noise.
.

Noise Power Spectra P(f)

Slow sweep rate  Ω

Fast sweep
rate Ω

Universal scaling behavior: Power
spectra for Barkhausen noise versus
frequency for slow and fast sweep rates.
Lines show power law scaling over several
orders of magnitude.

Effect of long-range (LR) demagnetizing field studied by zero temperature
random field Ising model. Two generic behaviors identified for
magnetization subloops:
- with LR field, response similar to self-organized critical systems
- without LR field, avalanche size distribution displays history-induced
critical scaling

Very good agreement with experiments on CoPt and CoPt/CrB thin films.

Model triblock copolymer Snapshot of resulting structure

1. Self-Organization of Chemical Order
in Alloys Driven by Irradiation

Materials under irradiation are dissipative systems, and as such, they are
susceptible to self-organize (SO).  Twofold interest:
- Fundamental: excellent test bed of the theory driven systems since
microscopic mechanisms are well identified and can be varied in a
controlled manner experimentally.
- Practical: self-organization can be used to synthesize functional
nanocomposites with tunable scales

Irradiation with energetic ions creates displacement cascades, resulting
in disordered zones in chemically ordered alloys. At finite temperatures,
this disorder competes with thermally activated reordering.

We used kinetic Monte Carlo simulations and analytic modeling to
identify that self-organization of the chemical order field can take place
when the cascade size exceeds a threshold value.

KMC Dynamical phase diagram

Maps of B atoms at steady
state under irradiation with
increasing disordering rate:
(a) Γb = 1 s–1;
(b) Γb = 10 s–1;
(c) Γb = 100 s–1.
Each one of the 4 ordering
variants is displayed with
one color

(a) (b) (c)

Three possible steady states for the order field
in a A3B alloy that displays L12 ordering

Impacts and perspectives
• Demonstrate the key role
played by extrinsic length scales
in dynamical self-organization

• Potential application for Fe-Pt
exchange spring-magnets, which
require A1-L10 or L12-L10
nanocomposites

• Alloy-specific simulations by
Genetic-Programming KMC

4. Gelation in Triblock Copolymer Solutions

Petka et al. [Science 281, 389 (1998)] demonstrated that triblock
copolymers with a water-soluble domain flanked by two rod-like
hydrophobic end blocks are capable of undergoing reversible gelation in
response to changes in pH or temperature.

However, the microscopic structure and the dynamics of this system
during the gelation process as well as their interconnection are difficult
to clarify using experimental methods. We have used molecular
dynamics simulations to investigate a coarse-grained model of this
system and to address the above-mentioned questions.

Probability distribution
function of #rods/bundle
peaks suggests formation of
interconnected bundles that
make up the gel structure.
Percolation threshold
corresponds to εh/kBT=1.15

Key Findings

• Onset of percolation coincides with bundle formation and leads to
slow-down of dynamics, but occurs much earlier than actual gelation

• Both short-range and long-range order are being established upon
decrease of temperature

Viscosity


