

Motivation and Objective

Motivation: Recall that $T \sim \exp(-1/\lambda)$, and $\lambda = N(0)V$ for molecular solids.

Smaller fullerenes have a larger electron phonon interaction potential:[†] $V_{en} \propto \text{curvature}^{\ddagger}$

$$V_{ep} = \sum_{v} \frac{1}{M \omega_{v}^{2}} \frac{1}{g^{2}} \sum_{i,j}^{g} |\langle i | \varepsilon_{v} \cdot \nabla f \rangle|$$

Objective: Find C_{γ_8} -derived molecular solids which are potential high-T superconductors.

†. Figure data taken from N. Breda et al., PRB 62, 130 (2000) and references therein ‡. V. H. Crespi, PRB **60**, 100 (1999).

How to make a fullerene superconductor?

In the spirit of C_{60} :

Step 1: Choose a small fullerene with a large V_{en} . Try to do better than C_{60} .

 \rightarrow Next most abundant fullerenes are C_{36}^{\dagger} and C_{28}^{\bullet} .

Step 2: Make a molecular solid with weakly broadened bands resulting in a large DOS at the band edges.

 \rightarrow Need a close-shell molecule with a large gap, $C_{24}B_4$, $C_{24}N_4$, $C_{28}H_{4}$, and then find a solid that weakly interacting solid.

Step 3: Electron-dope the conduction band within a rigid band donor picture picture.

 \rightarrow Intercalate alkali atoms into solid. [†] M. Cote et. al, Phys. Rev. Lett. **81**, 697 (1988).

Hyperdiamond Solids

Hyperdiamond (HD) solids are diamond lattices with fullerene (tetrahedral symmetry) as a basis.

Schematic diagrams of the 1st nearestneighbor (n.n.) in the HD structures (top) with examples of pairs of C_{28} -derived molecules shown below. The lattice sites in the solid are highlighted by the grey spheres enclosed in the tetrahedra. The two distinct orientations of the constituent molecules are represent by those of the tetrahedra. The n.n. pairs show two distinct bonding configurations: (a) *apex-bonded* C_{γ} HD forms covalent bonds[†]

(b) *face-bonded* $C_{28}H_{4}$ HD forms weak bonds †E. Kaxiras et. al, Phys. Rev. **B** 49, 8446 (1994).

C___derived Molecular Solids: Structure, Doping & Electron-Phonon Interaction

Nichols A. Romero, Jeongnim Kim, and Richard M. Martin Department of Physics, Materials Research Laboratory and Materials Computation Center, University of Illinois, Urbana, IL 61801

 $V|j\rangle$

Isocharge density surface for (*Left*) apex-bonded C_{28} HD and (*Right*) face-bonded $C_{28}H_4$ HD. Notice the lack of bonds in the molecular solid $C_{28}H_{4}$

Structural and Electronic Properties

Ab initio calculations performed within DFT-LDA using SIESTA.

molecule	apex-bonded HD		face-bonded HD	
$C_{24}B_4$	molecules break apart		molecules break apart	
$C_{24}N_{4}$	covalent solid		hybridization	
$C_{28}H_4$	sterically hindered		molecular solid	
properties of solid/molecule		C ₆₀		C ₂₈ H ₄
lattice constant		13.9		16.3
conduction bands DOS (eV/spin/molecule)		810		45
binding energy (eV/molecule)		0.6		0.2
LUMO-HOMO gap (eV)		1.6		2
<i>V</i> _{ep} (meV) [Intramolecular phonons only]		64		169

Similarities include: weakly broadened bands & large band gaps. NOTE: Units of DOS (states/eV/spin/cell)

Covalent vs. Molecular Solid

- (a) For the C_{60} solid, the set of three (five) bands above (below) the gap are derived from the three (five)-fold degenerate LUMO (HOMO) of the C₆₀ molecule.
- (b) For the $C_{28}H_4$ solid, the set of six bands above and below the gap are derived respectively from the threefold degenerate LUMO and HOMO for each $C_{28}H_{4}$ in the two-molecule

- Band structure comparison among three doping scenarios:

The superconducting transition temperature T_{a} can be estimated using McMillan's solution to the Eliashberg Equations:

$$T_c = \frac{0}{1}$$

1. $\mu^* \approx 0.22$ (for C_{60} and $C_{28}H_{4}$) 2. $\omega_{1n} \approx 1000 \text{ K} (\text{for } \text{C}_{60} \text{ and } \text{C}_{28} \text{H}_{4})$ 3. $\lambda (Na@C_{28}H_4) \approx 1.5\lambda (K_3C_{60})$ 5. $T(Na@C_{10}H_{1}) \approx 3T(K_{2}C_{10}) \approx 58 \text{ K}$

- $C_{28}H_{4}$ solids is problematic.

This work funded by NSF DMR-99-76650, DMR-03-25939 and DOE DEFG-96-ER45439. Calculations performed on NCSA IBM p690, the PSC Alphaserver & MCC IBM.

(a) Intercalation of Na atoms into tetrahedral site (b) Intercalation of Na atoms into interstitial site between opposing six-membered rings on n.n. $C_{28}H_{28}$

(c) Encapsulation of Na atom into the $C_{\gamma}H_{\Lambda}$ cage

Legend: Solid C , H bands; Dopant bands Femi Level.

(a) Sodium and Hydrogen *s* states hybridize lead to dopant bands at Fermi level. (b) Lattice constant increases from 16.3 Ang. to 18.1 Ang; Jahn-Teller Effect in $C_{\gamma}H_{\lambda}^{-1}$ leads to a gap opening in the solid.

(c) Ideal doping case \rightarrow rigid band donor

T for Solid NaaC H

 $\left|\frac{\omega_{\text{ln}}}{1.2}\exp\left|-\frac{1+\lambda}{\lambda-\mu^*(1+0.62\,\lambda)}\right|\right|$ 4. $T_{C}(K_{3}C_{60}) = 19.3$ K leads to $\lambda (K_{3}C_{60}) = 0.84$ Estimated T for Na@C, H is higher than that of Cs, C (40 K). **Conclusions**

1. $C_{28}H_{4}$ forms a molecular solid similar to C_{60} .

2. Conventional doping of alkali atoms into interstitial sites in

3. Endohedrally doped $C_{28}H_4$ may superconduct with $T_c \approx 58$ K. * Results published in PRB **70**, 140504(R) (2004).

Acknowledgments