
Computer science-based approaches for the design of advanced materials

Overview:  
Approximations from Search Spaces
For many large problems, such as predicting materials behavior, we 
build a search space, project the problem onto the search space, 
and solve a small problem. The large problem is then solved as a 
sequence of small problems.

As examples, we do this for:
• Linear systems and least squares
• Eigenvalue problems
• Systems of ODEs
• Approximations to functions of matrices

The search space we consider here is a Krylov space, a typical ele-
ment in the search space is a polynomial in a matrix times a vector.

• Cheap in memory
• Cheap in work (if matrix-vector product is cheap, often linear)
• Stop early with adequate accuracy

Many problems lead to long sequences of slowly changing matrices. 
Based on the underlying mathematics, we select a subspace of previous 
search spaces and then adapt and reuse (“recycle”) this space to 
improve the convergence or the approximation for subsequent matrices in 
the sequence.

To make recycling work well, we are concerned with effects of small 
changes in the matrix: perturbations of solutions, perturbations of 
invariant subspaces (or eigenvectors), and perturbations of other 
relevant values, vectors, or spaces.

Our primary objectives are:

• determining for a given problem whether recycling is appropri-
ate and efficient.  For example, when simulating crack propaga-
tion, the linear solver is faster if we remove low-frequency modes 
from the equation. The low frequency modes do not change for a 
tiny propagation of the crack, and are reused for the next matrix. 
Therefore, the next linear system can be solved faster.

• that the solver learns fast, to cope with relevant system changes.   
For example, over sufficient propagation of the crack, the  
low-frequency modes change drastically, but the solver+recycling 
method is able to cope with the rate of change.

Collaborations
Applications for this research include crack propagation, fatigue and 
fracture, diffuse optical tomography, structural topology optimiza-
tion and design of advanced materials, materials science, Quantum 
Monte Carlo and variants, electromagnetic wave propagation, and 
computational fluid dynamics.  The research below is funded by the 
National Science Foundation and the Department of Energy.

Two example applications described on this poster are:

• Structural topology optimization; design of advanced materials 
(Glaucio Paulino, Civil Eng, UIUC)

• QMC for materials (David Ceperley, Physics UIUC; Jeongnim Kim, 
MCC/NCSA, UIUC)

Other active research collaborations include:

• Approximating Green’s functions in KKR methods (Duane D. Johnson, 
Matls Sci, UIUC; Andrei Smirnov, ORNL)

• Fracture/crack propagation (Philippe Geubelle, Aero Eng, UIUC)

• Tomography (Misha Kilmer, Tufts)

• Simulation of fracture in disordered materials (Phani Nukala, ORNL)

Application:  
Topology optimization for  
designing advanced materials
Co-Principal Investigators: Glaucio Paulino (Civil Eng, UIUC) and Eric de Sturler (CS, UIUC) 

Computer science plays a key role in modelling and creating materials that 
have very special properties and behavior, for example, a material with 
negative thermal expansion coefficient that expands upon cooling. 

We have a computed an  
optimal design for a functional 
graded material. Due to the 
functionally graded material 
properties of each element, 
pictured at right, we achieve 
macroscopically a negative 
Poisson ratio. 

An element’s behavior and 
density can be represented 
by equations, and by solving 
discretized versions of these  
equations we can calculate 
total deformation and model 
and optimize an element’s behavior and interaction with neighboring 
elements, and thus the behavior of the material.

Significant results: With one student, we are currently optimiz-
ing structures on a PC using an order of magnitude more unknowns 
than other groups.  With another student, we are advancing these 
computational techniques and materials models to design advanced 
micro-materials. Other researchers are developing techniques to  
actually construct such materials.  

Future work:  The next step is to couple these models and add atom-
istic/electronic structure calculations to compute appropriate materials 
models, and perform large multiscale simulations.

Optimization demonstration:  
Designing a truss-like structure
The figure below illustrates the major steps of the topology optimi-
zation algorithm. The change in shape represents changes in design 
variables.

In this example, the goal is to construct the structure for the strongest 
bridge made from a given amount of material. The design process is 
to divide the block into a mesh with many small elements and optimize 
the local densities or other design variables for the elements. When 
taking into account the amount of energy taken up by structure itself, 
the finite element analysis will develop “automatically” into truss-like 
structures.  
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Findings
This idea of  “recycling” works well for many applications that deal 
with a sequence of problems. We have developed new, faster meth-
ods for:

• solving linear systems
• solving sequences of linear systems
• estimating determinants of large systems in O(N)

All of this is achieved by recycling over Krylov substeps: carrying out 
iterative methods that make intelligent use of the results of earlier 
steps. 

Scalability:  Current methods for Quantum Monte Carlo have cubic 
scaling. The methods we are considering appear to have linear or 
near linear scaling.

Easy to parallelize: Our methods are built on well-recognized, 
standard, computational components.

Publications arising from this research
• Misha Kilmer and Eric de Sturler, “Recycling Subspace Information 

for Diffuse Optical Tomography”, accepted for publication in SIAM 
Journal on Scientific Computing, July 2005. 

• Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson, 
and Spandan Maiti, “Recycling Krylov Subspaces for Sequences of 
Linear Systems”, Tech. Report UIUC DCS-R-2004-2421  
(www.cse.uiuc.edu/~sturler/Public/KrylovReuse.ps) and  
UILU-ENG-2004-1722, March 2004; revision submitted to  
SIAM Journal on Scientific Computing.

• “Fast Iterative Solvers for Topology Optimization”, Shun Wang, Eric 
de Sturler, Glaucio Paulino, to be submitted to International Jour-
nal for Numerical Methods in Engineering (IJNME).

Advanced materials
Left: We have computed an optimal design 
from functional graded material with a 
negative Poisson ratio.  
Right: a single element of the material.

Speed gains
The graph shows the number of linear solver iterations per optimi-
zation step. The black line represents a standard method, but with 
scaling and preconditioning. Our method uses recycling and precon-
ditioning (shown in brown and blue) and is 40-60% faster. The initial 
optimization steps correspond to large changes in design variables.

Application:  
Quantum Monte Carlo for Materials
Co-Principal Investigators: David Ceperley (Physics, UIUC) and Eric de Sturler (CS, UIUC) 

We are participating in a four-year grant to investigate properties of 
deep-earth materials,  such as ferrite oxides. At depths greater than  
100 kilometers, these materials are difficult to evaluate in standard 
laboratory experiments. One example of where models of the 
behavior of deep-earth materials could be of use is in understanding 
the movement of tectonic plates.

In current methods, exactly computing determinants typically has 
O(N)3 cost.  Rather than exactly calculating determinants, our 
approach is to use subspaces to estimate determinants sufficiently 
accurately and cheaply, at O(N) cost.

First approach: Using methods of Golub and Bai, based on two 
steps:   

Approximating bilinear or quadratic forms over a Krylov space is 
equivalent to Gaussian quadrature.  If we combine the Gaussian 
quadrature with stochastic techniques, we can estimate determi-
nants, instead of exactly calculating them. This approach scales well 
but converges slowly, and so is practical only for very large problems.

Current approach: Rather than estimating determinants, we 
estimate the ratio of determinants of two successive steps, which 
determines if we accept the next step.

Both our first and current approaches have linear scaling, but the 
current approach already looks competitive for a small number of 
(several hundred) electrons.
Accuracy in the ratio of  
the determinants
Image shows number of matrix-vector 
products required for (approximate) 
accuracy in MC steps for varying 
number of particles. The middle line 
(green) indicates the desired accu-
racy of 3 digits, and exhibits a very 
modest increase going from 100 
to 3000 particles. Because of theo-
retical considerations, we believe there is an upper bound for the number of 
matrix-vector products independent of the number of particles. 
 
Significant results: The stochastic component has been eliminated. 
The resulting gain in speed may enable computations which are 
currently performed on supercomputers to be accomplished on a 
workstation.

This collaboration of mathematical science with geoscience includes  
Carnegie Institute in Washington, the Ohio State University, Cornell University,  
and North Carolina State University under NSF EAR Award 05-30643.
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Krylov Space Approximations  for   
Materials Science Problems
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