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Multiscaling via Symbolic Regression

Genetic Programming: Machine-Learning Method for Multiscale Modeling Ab Initio Accurate Semiempirical Quantum Chemistry Potentials via Multi-Objective GAs

First, what is a Genetic Programming (GP)?

A Genetic Program is a genetic algorithm that  evolves
computer programs, requiring:

Representation: programs represented by trees
  – Internal nodes contain  functions

• e.g., {+, -, *, /, ^, log, exp, sin, AND, if-then-else, for}

  – Leaf nodes contain terminals
• e.g., Problem variables, constants, Random numbers

Fitness function: Quality measure of the program
Population: Candidate programs (set of individuals)
Genetic operators:
  – Selection: “Survival of the fittest”.
  – Recombination: Combine parents to create offspring.

  – Mutation: Small random modification of offspring.

Goal: Evolve constitutive “law” between macroscopic
variables from stress-strain data with multiple strain-rates for
use in continuum finite-element modeling.

Flow stress vs. temperature-compensated strain rate for AA7055
Aluminum [Padilla, et al. (2004)].
• GP fits both low- and high strain-rate data well by introducing
(effectively) a step-function between different strain-rate even though
no knowledge of two sets of strain-rate data were indicated to GP.

– Automatically identified transition point via a complex relation,
g, which models a step function between strain-rates involved.

• GP identifies “law” with two competing mechanisms
– 5-power law modeling known creep mechanism
– 4-power law for as-yet-unknown ‘creep’ mechanism.

1. Evolving Constitutive Relations

2. Multi-Timescale Kinetics Modeling

Goal: To advance dynamics simulation to experimentally
relevant time scales (seconds) by regressing the diffusion
barriers on the PES as an in-line function.
• Molecular Dynamic (MD) or Kinetic Monte Carlo (KMC) based methods fall
short 3–9 orders of magnitude in real time.
– Unless ALL the diffusion barriers are known in a ‘look-up’ table.
– Table KMC has109 increase in “simulated time” over MD at 300K.

• Our new “Symbolically-Regressed” KMC (sr-KMC)
– Use MD to get some barriers.
– Machine learn via GP all barriers as a regressed  in-line function call, i.e. “table-
look-up” KMC is replaced by function.
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Summary
Our results indicate that GP-based symbolic regression is an effective and
promising tool for multiscaling. The flexibility of GP makes it readily
amenable to hybridization with other multiscaling methods leading to
enhanced scalability and applicability to more complex problems. Unlike
traditional regression, GP adaptively evolves both the functional relation
and regression constants for transferring key information from finer to
coarser scales, and is inherently parallel.

• GP predicts all barriers with ~0.1% error from explicit calculations of only <3% of
the barriers. (Standard basis-set regressions fail.)
• GP symbolic-regression approach yields:

– 102 decrease in CPU time for barrier calculations.
– 102 decrease in CPU over table-look-ups (in-line function call).
– 104–107 less CPU time per time-step vs. on-the-fly methods (note that
each barrier calculation requires 10 s  with empirical potential, 1800 s for
tight-binding, and first-principles even more).

• (Future) Could combine with pattern-recognition methods (e.g., T. Rahman et al.),
or temperature-accelerated MD, to model more complex cooperative dynamics.
• (Current) Utilize the GP in-line table function obtain from tight-binding potential in
a kinetic Monte Carlo simulation for this  surface alloy vacancy-assisted diffusion.
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Goal: Functional augmentation and rapid multi-objective
reparameterization of semi-empirical methods to obtain
reliable pathways for excited-state reaction chemistry.

• Ab Initio methods: accurate, but highly expensive.
• Semi-Empirical (SE) methods: approximate, but very inexpensive.

– Reparameterization based on few ab initio calculated data sets involving
excitations of a molecule, rather than low-energy (Born-Oppenheimer)
states, e.g. use MNDO-PM3 Hamiltonian and find the MNDO parameters
specific to particular molecular system.
– Involves optimization of multiple objectives, such as fitting simultaneously
limited ab initio energy and energy-gradients of various chemical excited-
states or conformations.
– (Future) Augmentation of functions may be needed.

• Propose: Multi-objective GAs for reparameterization
– Non-dominate solutions represent physically allowed solutions, whereas
dominant solutions can lead to unphysical solutions.
– Obtain set of Pareto non-dominate solutions in parallel, not serially.
– Avoid potentially irrelevant pathways, arising from SE-forms, so as to
reproduce more accurate reaction paths.
– (Future) Use Genetic Programming for functional augmentation, e.g.,
symbolic regression of core-core repulsions.

• Advantages of GA/GP Multi-Objective Optimizations, method is:
– robust,  and yields good quality solutions quickly, reliably, and accurately,
– converges rapidly to Pareto-optimal ones,
– maintain diverse populations,
– suited to finding diverse solutions,
– niche-preserving methods may be employed,
– implicitly parallel search method, unlike applications of classic methods.

Kumara Sastry, D.D. Johnson, D.E. Goldberg, and P. Bellon,
Int. J. of MultiScale Computational Engineering 2 (2), 239-256 (2004).

Overview
Multiscale simulations by coupling traditional methods have
proven inadequate due to ranges of scales, detailed information
needed from finer scales, and the prohibitively large numbers of
variables then required. So, for multiscale simulations (spatial
and temporal) we must provide data from finer (atomic) scales
that is reliable, avoids the need for finding "hidden variables" at
various scales, and is computational inexpensive.

Abstract
As such, we employ Symbolic-Regression via Genetic-Programming
– a Genetic Algorithm that evolves computer programs – to
represent the atomic-scale details needed to simulate processes
at time and lengths pertinent to experiment, or even to reveal
pertinent correlations that determine the relevant physics or
chemistry at differing scales.

We provide two recent examples involving regression of:
 i)  Regress the constitutive behavior for an aluminum alloy,

Here a correlation between stress/strain/strain-rate is extracted
from experimental data.

 ii) Diffusion barriers for multiscale kinetics on alloy surfaces.
A bottleneck for multi-timescale thermally-activated dynamics is
computing the potential energy surface (PES). GP regresses
symbolically a mapping of ALL saddle-point barriers from a FEW
via molecular dynamics, avoiding explicit calculation of all barriers.

Analytic Estimate of Population Size vs. Empirical
Results: Population size (no. of solutions kept
to evolve) is a critical factor to ensure reliable
solution.

Shown is the probability that at least one copy
of all raw subcomponents appear in population vs
population size, n, for different tree sizes λ=2h,
for the later diffusion example.

   Finding: population of 150-200 is enough.
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•  Getting the Problems ‘Measure of Fitness’
Problem-dependent choice: e.g., for diffusion, choose weighted (wi)
least-squares fit of GP-derived vs. M calculated barriers, where wi =
|ΔEMD|–1 as lower-energy barriers are more accessible than high-
energy ones. Fit could to experimental data, too.

• Getting the Problems ‘Optimal Population Size’ 

Application:   Surface-vacancy-assisted diffusion in segregating CuxCo1-x.
• Using Molecular Dynamics based on density-functional, tight-binding, or empirical
potentials, we calculate M (un)relaxed saddle-point energies ΔE(xi) for atoms
surrounding a vacancy with  first and second neighbor environment denoted by 0 or 1
(for binary alloys) in a vector {xi}.

• GP evolves in-line barrier function and predicts remaining unknown barriers.

• Newly predicted low-energy barriers are calculated directly by MD as verification
step. If correct, use barrier function. If not correct, now have new barrier in a M+1
learning set.  Repeat cycle (MD is +99.9% of step).
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Distribution Algorithms," Genetic and Evolutionary Computation Conference (2005).
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*chosen by the AIP Editors as focused article of frontier research in
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• Getting the Problems ‘Basis Functions’
Using these operations a tree-like code is self-generated and provides
machine-learned “basis functions” and their “coefficients” (by fitting
to some measure of fitness, e.g., comparing calculated and GP-
derived diffusion barriers).
 – Example “leaf of the tree” (term in basis) created via the above
“genetic operators”, where (a) and (b) leaves created (e) and (f).

• What is Non-Dominant Solutions on Pareto-Optimal Front?
Using a MNDO method for Benzene C6H6 requires 11 parameters, if
the H parameters are fixed.  To fit accurately CASPT2 results for two
objectives (energy and energy-gradient errors) on the excited-state
potential energy surface (Frank-Condon region), the 11 parameters are
globally optimized keeping a population of solutions to evolve and the
solutions at the ‘nose’ of the Pareto are accepted as ‘best’ solutions.
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GA/GP multiobjective optimization avoids
falling into local minimum of fitness, as
marked by red arrows and star. Whereas the
global optimized solutions on the Pareto
front are shown in dark blue.

Also, avoids possible irrelevant and
unphysical reaction paths possible from
semiempirical potential forms.

Semi-empirical potential parameterizations lead to differing
solutions, or competing solutions. Using GA/GP we can find
optimal potentials and avoid pathways from dominating but
irrelevant solutions.

• e.g., solution C is dominate over B in error in energy.
• solutions A and B are non-dominate in multiobjectives.
• Pareto front solutions are denoted by red circles
and all represent potentially “good” solutions all with
different parameter sets for the empirical potential
• For physical reasons, the “nose” of Pareto front
(between A and B) gives the most optimal solution
desired for quantum-chemistry applications.

• Biasing the Multi-Objective Search
Weights can be assigned to each objective to bias search and speed up
global search. For example, error in energy can easier weighted as more
important to minimize than the error in energy-gradient. , even if both
objectives are obtain via an analytic formula.

Such weighting is an important parameter for control of time to solution.

Summary
• We find that non-dominant, multi-objective reparameterization of
empirical Hamiltonians using Genetic Algorithms is an effective
tool for developing ab initio accurate empirical potential based
upon databases from high-level quantum-chemistry methods.
• Excited-state properties (reaction paths and structures) are in
very good agreement with direct CASPT2 calculations.
• We find that parameters sets from one molecular system is
transferable to a similar molecular system, opening the
possibility of addressing more complex molecular interactions.

Ab Initio Accurate Semiempirical Potentials
Excited-State Reaction Chemistry

Recently, use of genetic algorithms to fit empirical potentials
has grown in interest to build in more problem specific
information cheaply. For example, developing an accurate
empirical potential from database of high-level quantum-chemistry
results is done by serial fitting to minimize error in energy
differences between ground-state and excited states and then error
in the energy derivative differences.  Typically, however, the fitting
is done in a serial fashion (first on error of energy difference,
then on error in derivatives), which is not a global search.
Moreover, the genetic algorithms used are not so-called
competent GAs developed from optimization theory, which lead
to bad scaling and inefficient performance.

Here we explore the use of Non-Dominant, Multi-Objective
Minimization using Genetic Algorithm to reparameterize semi-
empirical quantum-chemistry potentials over a global search
domain using the concepts of Pareto optimization fronts.

• (Un)Biased GA Multiobjective Optimization of Benzene
• Biasing (here factor of 2) the error in energy over error in energy-gradient
yields rapid advance of Pareto front and physical solutions.
• Unbiased, if left to evolve long enough, reaches biased solutions, but
early solutions may yield unphysical excited-state reactions.
• (Un)Biased solutions on the Pareto front consistently better than all
previous parameterizations, including using standard GA optimization,
e.g., from  Martinez and coworkers,  see Toniolo, et al. (2004).

Re-parameterized MNDO Hamiltonian
yields relatively accurate excited-state
potential energy surfaces.

• GA-MO-dervied MNDO S2/S1
conical intersections agree well with
CASPT2, even though only included
x=0 reaction coordinate in fitting.

• Molecular geometry for excited-
states also agree well.

• (Un)Biased GA Multiobjective Optimization of Ethylene, C2H4.
• Found similar results to Benzene: Biased solutions on Pareto front
often better than unbiased and always physical. But near the nose all
solutions are physical.
• We find that the historical MNDO parameters are a set yielding
almost unphysical solutions (see figure near 2.5 eV on error in energy).
• GA-MO-derived MNDO S2/S1 conical intersections agree well with
CASPT2, with only x=0 reaction coordinate included in fitting.
• Molecular geometry for excited-states also agree well.

Transferability of the MNDO
parameters: Amazingly we find
that a Benzene set of parameters
may be used for Ethylene and
provide a solution near a Pareto set
found by direct optimization.

• Population Analysis for Ethylene, C2H4
• Must maintain large enough population to obtain full Pareto front but
not so large as to waste computational resources because each
solution is a full MNDO run for the set of molecular configurations
used in fitting!

• Red Line is Pareto front for
large population  > 1000.

• Analytic estimate suggests ~760
is required to find population size.

• Figure show that until ~800 the
Pareto front is not found.

• For Benzene, only about ~150 is
required for the population size.

Future Directions

• We will investigate the use of Genetic Programming to machine-
learn new and more accurate empirical potential functional forms.
• e.g. We will start with the original MNDO Hamiltonian and
machine-learn in a molecular-specific way a GP-MNDO Hamiltonian.
• With this GP-MNDO Hamiltonian we can perform nearly ab initio
accurate global searches of reaction pathways, which later may be
studied with higher-level methods for reactions of interest.
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