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Inter"element discontinuous basis functions

Weak enforcement of balance/conservation jump conditions $e.g., Rankine&
Hugoniot% 

Enables exact conservation per element and O$N% complexity for hyperbolic 
problems

• Localize all !elds to atoms:

• Set unde!ned stress and strain !elds to zero Conclusions
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Simulation Details

•  Discrete
' •  mass, momentum
' •  position, velocity
' •  !xed length scale
•  Finite number d.o.f.
•  Non&local interactions
' •  empirical or ab initio

•  (Correct) description of defects

•  Finite di*erences in time

•  Unde!ned atomistic stess 
' and strain set to zero
•  Uniform time step 
' $spacetime slabs%
•  Integrate over slab

• Address full set of mechanics relations

• Eliminate non"physical re#ections at interface

• O$N% computational complexity and parallelizable

• Modular with popular MD algorithms $velocity Verlet%

• Uni!ed mathematical framework

Spacetime Discontinuous Galerkin Method

• Inter&element discontinuous basis functions

' • Weak enforcement of balance/conservation 
'    jump conditions $e.g., Rankine&Hugoniot% 

' • Enables exact conservation per element and 
'    O$N% complexity for hyperbolic problems

• Direct discretization of spacetime

' • Unstructured spacetime mesh for variable 
'    time step

' • Causality constraint for patch&by&patch '        
'    solution procedure

' • Rich parallel structure
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causality constraint

Adaptive Analysis

Cohesive
Fracture Model

normal cohesive traction

Atomistic vs. Continuum Modeling

Objectives

Two–Field SDG 
Formulation for u, v

singular crack"tip 
velocity  !eld

Localize to Discrete
Atomic Fields

Explicit Position Update

Implicit Velocity Update

•  Continuous !elds
' •  mass, momentum density
' •  position, velocity
' •  variable length scales
•  In!nite number d.o.f.
•  Localized stress, strain
' •  macroscopic, homogenized
•  Constitutive models describe 
    cohesion, plasticity, damage, ...
•  Finite elements in space$time%

• Forces from explicit displacement 
' update; assume linear in time

• Integrate quadratic atomic velocities 
' with Simpson+s rule

• Yields standard Verlet velocity update

Coupling Scheme

•  Equip atomistic boundary with:
' • Homogenized velocity !eld
' • Unknown tractions represent interactions '    
' ' with missing atoms
' • Tractions distribute to atomic forces dual to 
' ' homogenization scheme
•  Extra boundary term:

• Potentials $free to choose%
' • Mass spring
' • Morse
• Re#ection&free coupling in 
' long wavelength limit
' • Periodic boundary conditions
' • Morse
• 100&atom, nearest&neighbor 
' model
• Weak enforcement of 
' • Momentum balance
' • Velocity compatibility

• Uni!ed mathematical framework shows promise as means to resolve open 
'  problems in multiscale simulation

• Current and continuing work

'' • Self&equilibrating interaction forces

'' • Implementation in two space dimensions

'' • Energy balance using thermomechanical continuum

''    • non"Fourier $MCV% hyperbolic thermal model


