
Open Source Code for Path Integral Monte Carlo
BRYAN K. CLARK AND KENNETH P. ESLER, JR.
Department of Physics, University of Illinois at Urbana-Champaign

Supported by the National Science Foundation under Award Number DMR-03 25939 ITR,
via the Materials Computation Center at the University of Illinois at Urbana-Champaign

Motivation

Path Integral Monte Carlo (PIMC) is a numerical method to study
finite-temperature systems at the quantum level. The imaginary-time
path integral formalism, first introduced by Feynman, naturally includes
correlation effects. Transforming this into a numerical algorithm yields
exact results for bosons and very high accuracy results for fermions. It is
a very general method applicable to such diverse systems as superfluid
helium, exotic phases of hydrogen under extreme pressures, and the
Wigner crystal. The PIMC method, and related quantum Monte Carlo
methods, have provided the gold-standard against which other methods
are judged.

The PIMC method is in a state of continual development as a whole range
of new techniques are being created. To facilitate this, it is helpful to be
able to quickly prototype new techniques and algorithms without sacri-
ficing computational efficiency. Toward this end, we introduce here an
object-oriented Path Integral Monte Carlo Code which we call PIMC++.
This code has been designed with the goal of becoming a new standard
code for the PIMC community. While modular and efficient, it is suf-
ficiently general to be useful for a broad range of physical systems. To
ensure accessibility and to engage a wide community, the code will be
released as free and open-source software.

1 Path Integral Monte Carlo

1.1 Introduction

Path Integral Monte Carlo is a means of computing thermal expectation
values of observables in many-body quantum systems, utilizing the ther-
mal density matrix, ρ(R,R′;β), defined by

ρ(R,R′; β) ≡
〈

R

∣

∣

∣
e−βĤ

∣

∣

∣
R

′
〉

. (1)

Any thermal expectation value may be computed as

〈Ô〉thermal =
1

Z

∫

dR Ôρ(R,R′; β). (2)

We can rewrite ρ as

ρ(R,R′; β) =

∫

dR1 dR2 . . . dRM−1 (3)

×ρ(R,R1;
β

M
)ρ(R1,R2;

β

M
) . . . ρ(RM−1,R

′;
β

M
).

This expansion allows the use of a short-time approximation to the den-
sity matrix, which becomes exact as M → ∞. We may then com-
bine (2) and (3), and use Metropolis Monte Carlo to perform the high-
dimensional integration.

1.2 Quantum-Classical Isomorphism

The integrand is a function of 3N spatial variables, at each of M points
in “imaginary time.” Taken together, these variables sweep out N dis-
crete particle paths which return to themselves. Graphically these paths
appear similar to classical ring polymers. Viewed this way, the PIMC
simulation involves sampling many configurations of these ring poly-
mers. Equilibrium averages of measurable quantities are then calculated
by averages over these configurations. Properties of the quantum system
then become describable in this classical language. Below we summarize
this correspondence 1.

Physical quantity Polymer isomorphism
bose condensation delocalization of ends of open polymer

boson statistics allowing polymers to hook up in any pos-
sible way

degeneracy temp.
a condition in which polymers are dense
enough and extended enough that they
touch and can exchange

density the bead density
free energy free energy of system of ring polymers
imaginary velocity bond vector
kinetic energy negative spring energy
momentum correlation bond-bond correlation
momentum distribution Fourier transform of end-end distribution

pair correlation pair-correlation function between beads at
the same “time”

particle ring polymer
superfluid density the mean-squared winding number

superfluid state
a state in which a finite fraction of poly-
mers are hooked together in polymers of
macroscopic size

temperature
inverse polymer length, inverse coupling
constant for the inter-polymer potential,
and spring constant between neighboring
beads

thermal wavelength polymer extension

1.3 Simplified Algorithm

Ch oos e t im e s lice s
(p a rt o f p o lym e r) to ch a n g e

Con s t ru ct n e w p a th
for th e s e t im e s lice s

Ca lcu la te re s p e ct ive a c t ion s :
Old : S Ne w: S’

Ch oos e
a ra n d om
n u m b e r
0 < r< 1

if [e xp (S-S’) < r],
Re je c t ch a n g e

if [e xp (S-S’) > r],
Acce p t ch a n g e

Ca lcu la te a ve ra g e
p rop e rt ie s

1.4 The Pair Approximation

In order to perform the PIMC simulation, we need an approximation for
ρ(R,R′; τ), where τ = β/M . We use the pair-product approximation,

ρ(R,R′; τ) = ρ0(R,R′; τ)
∏

i<j

ρI(ri − rj , r
′
i − r

′
j ; τ), (4)

where ρ0 is the free-particle density matrix, and ρI is the interaction part
of the exact density matrix for the pair of particles i and j. This approx-
imation includes all two-body correlation effects exactly, leaving three-
body and higher effects to be included through the PIMC simulation.
The approximation is very well-controlled, having a time-step error of
O(τ3).
The two-body density matrix for a pair of particles interacting with a
central potential can be calculated exactly with squarer++ and tabulated
for use in PIMC simulation.

2 PIMC++

2.1 General Features

• modular, object-oriented design for easy addition of new moves,
observables, and actions

• free and periodic boundary conditions as well as twist-averaged
boundary conditions for reducing finite-size effects

• Bose, Fermi, and distiguishable-particle statistics

• high-accuracy pair actions

• optimized long-range/short-range action breakup

• embedded conjugate-gradient plane-wave pseudohamiltonian
code for calculation of ground-state nodes

• specialized moves to enhance ergodicity

• calculation of properties involving off-diagonal terms of the density
matrix

2.2 Code Design

PIMC++ is written in C++, with some calls to C and F77 libraries. It
makes extensive use of object-oriented design principles. The main code
is broken into four broad object types:

1. Path representation: specifies the location of all the particles at each
time slice (i.e., the classical polymers). Also stores important quan-
tities, such as the permutations and species information.

2. Moves: responsible for attempting random changes to the paths.

3. Actions: give the relative probability for a given path. This is used
to decide whether to accept or reject a proposed move.

4. Observables: measure the equilibrium averages of physical quanti-
ties. Comprising the output of the simulation, they include total en-
ergies, correlation functions, structure factors, superfluid fractions,
etc.

All these objects make use of inheritance to be independent and inter-
changeable, allowing new types to be created and inserted with little ef-
fort.

2.3 Input and Output

In order to facilitate the construction of object-oriented design, PIMC++
includes a novel hierarchical I/O library. Using a structured ASCII for-
mat for simple data, and NCSA’s cross-platform HDF5 binary format for
heavy data, the library abstractly accesses data in either format transpar-
ently at the application level. By segregating data through hierarchy, it
allows application objects to read and write their own data in a modular
fashion.

2.4 Parallelization

In order to tackle cutting-edge problems, PIMC++ must be able to scale
to utilize modern supercomputers. In order to scale efficiently to hun-
dreds of processors, it implements two independent modes of paral-
lelism, which may be used in conjuction.

1. Natural parallelism: Monte Carlo is naturally parallel. Simple
cloning of simulation runs with different random seeds yields bet-
ter statistics with no communication overhead.

2. Time slice partitioning: Very large systems may need to be divided
due to storage and equilibration time limitations. Time-slice de-
composition allocates contiguous chunks of paths onto different
processors, requiring only occasional communication.

These two modes, when used together, allow efficient scaling on very
large clusters and supercomputers.

2.5 Pseudohamiltonians

In the pseudopotential approximation, the scattering effects of the atomic
nucleus and core electrons upon the valence electrons are mimicked by
an effective potential, yielding the single-electron Hamiltonian of the
form

h(r) = −
1

2
∇2 + V (r). (5)

The pseudohamiltonian approximation adds additional flexibility by al-
lowing the mass to vary as a function of position and direction,

hPH(r) = −
1

2
∇[1 + a(r)] · ∇ +

b(r)L̂2

2r2
+ V (r), (6)

where a(r) and b(r) are the radial and tangential inverse masses, respec-
tively. In order for the eigenspectrum to be bounded from below, we
must have that

A(r) ≡ 1 + a(r) > 0 (7)
B(r) ≡ 1 + a(r) + b(r) > 0. (8)

2.6 Fermions

Because fermions are antisymmetric, the integral over their partition
function can not be naively interpreted as a probability distribution,
inhibiting using Metropolis for these systems. The canonical methods
for dealing with this problem are the restricted path or restricted phase
methods. These methods work by restricting the integration to the re-
gion in which a trial density matrix is positive. While approximate, these
methods have proven to be very accurate for many systems. PIMC++
implements both of these methods in advanced ways.
The following represents the nodal surface for a single electron at one
time slice in a 16-atom BCC sodium simulation.

3 Supporting Tools

We have developed a complete tool suite supplementing PIMC++, which
facilitates preparing, running, and analyzing the output of the code.

3.1 atom++

This is a simple self-consistent DFT code for atoms using the Vosko-Wilk-
Nusair exchange-correlation potential. It uses scalar-relativistic correc-
tions and allows restricted LDA calculations. This high-precision code
has been verified against the NIST Atomic Reference Data6. This pro-
vides the all-electron properties which phgen++ aims to reproduce with
effective potentials.

3.2 phgen++

We have developed an easy-to-use GUI interface for interactively de-
veloping pseudohamiltonians. The user simply opens the output from
atom++, selects the states to keep in the valence shell and a core radius,
then modifies the A(r), B(r), and V (r) functions interactively until the
desired properties are achieved. With each modification, the radial equa-
tions are integrated and plotted in real time, and the errors in the loga-
rithmic derivatives and partial norms are displayed. Once a suitable PH
is found, it is unscreened and saved to file.

3.3 squarer++ / fitter++

For each pair of particle types, we must calculate a corresponding pair
density matrix. This is the function of squarer++. Its features include:

• adaptive integration techniques, logarithmic representation, bicu-
bic spline interpolation, partial-wave extrapolation, and optimized
grids to increase accuracy

• full parallelization using MPI: scalable to hundreds of processors to
allow quick turn-around time

• general and applicable to all central potentials and pseudohamilto-
nians

• stores output in binary HDF5 format to maintain cross-platform ac-
curacy

fitter++ takes output from squarer++ and produces a number of different
fits for fast evaluation in PIMC++.

3.4 Data Analysis

The analysis code reads the output file and summarizes the out-
put in HTML, allowing web publication. Its features include

• written in Python for easy mod-
ification

• automatically determines error
bars

• generates trace plots of relevant
quantities allowing visual detec-
tion of simulation anomalies

• coherently aggregates data from
parallel runs

• creates Postscript graphs

• captures important run informa-
tion such as run time, build, and
code version

3.5 pathvis++

pathvis++ is an interactive 3D visualization package for viewing paths
recorded from PIMC++. Its features include:

• Fully-interactive 3D visualization with OpenGL

• Fourier smoothing for easy viewing

• PovRay export for publication-quality ray traced output

• Exports MPEG4 movies for pedagogy

• Extremely useful for teaching and debugging

• Calculates isosurfaces for study of nodal surfaces.

4 Example Applications

4.1 Metal-Insulator transitions in fluid alkali metals

• Alkali metals have a metal-insulator transition near their liquid-
vapor critical point.7

• The mechanism driving the transition is not well understood.

• Quantum effects and electron correlation are important.

• Transitions occur at a significant fraction of the Fermi temperature:
thermal effects are important!

• PHs require only 1 electron per atom, so calculation should be no
more computationally demanding than hydrogen.

Validation: BCC cohesive energy

• Used a 16-atom cell with periodic boundary conditions.

• Utilized ground-state nodes from a custom plane-wave conjugate-
gradient PH code.

• Error due to finite-size effects. Used LDA to approximate kinetic
energy corrections.

• Twist-averaged boundary conditions used to integrate over the first
Brillouin zone.

Results
Source Ec (eV)

Experiment 8 1.13
PIMC++ 1.268 ± 0.015
DMC9 0.99

4.2 Supersolid?: Off-diagonal long range order of solid
4He

Kim and Chan4 have observed non-classical rotational intertia in bulk
solid 4He . They attribute this to a “supersolid” phase of the equilibrium
bulk 4He as shown in their above phase diagram. Their experimental
evidence indicates that topological properties of the system are important
in observing the effect.

0 5 10
∆r (A)

10
-15

10
-10

10
-5

0

n[
∆r

]

T=0.133 K
T=0.2 K
T=0.25 K
T=2.22 K
Shadow Wave Function (Galli, et al)
T=2.22 K (Longer Box)

Using PIMC++, we calculate the off-diagonal terms of the density matrix
in solid 4He. This allows us to establish whether the system is Bose-
condensed:

lim
|∆r|→∞

ρ1(∆r) > 0

where ρ1 is the single body density matrix.
The bottom five curves are our results and the upper curve is a compar-
ison with a calculation done by D. Galli, et al5 using the shadow wave
function. As r → ∞ the value of the off-diagonal terms decay very
rapidly toward 0. Consequently, our results indicate there is no BEC in
this system. This supplies evidence that a bulk equilibrium supersolid
phase in 4He is not responsible for Kim and Chan’s results.

References
[1] D.M. Ceperley, Rev. Mod. Phys 67, #2 (1995)
[2] G.B. Bachelet, D.M. Ceperley, and M.G.B. Chiocchetti, Phys. Rev. Lett. 62,

2088 (1989)
[3] Vosko, Wilk, Nusair, Can. J. Phys. 58, 1200 (1980)
[4] E. Kim and M. H. Chan, Science 305, 1941 (2004)
[5] D. Galli, M. Rossi, and L. Reatto, Phys. Rev. B 71, 140506 (2005)
[6] Atomic Reference Data for Electron Structure Calculations,

http://physics.nist.gov/PhysRefData/DFTdata/contents.html
[7] Friedrich Hensel and William W. Warren, Jr. 1999. Fluid metals: the liquid-vapor

transition of metals, Princeton: Princeton University Press
[8] K.A. Gschneidner, Jr., in Solid State Physics, edited by F. Seitz and D. Turnbull

(Academic, New York, 1964), Vol. 16, p. 344
[9] R. Maezono, M. D. Towler, Y. Lee, and R. J. Needs, Phys. Rev. B 68, 165103

(2003)

Acknowledgments

This work has been performed under the guidance of Professor
D.M. Ceperley. Calculations were performed on NCSA’s Tungsten cluster
and UIUC’s CSE Turing cluster.

