Spintronics/Electronics in Quantum Dots

J. Kim ${ }^{1,3}$, D. Melnikov ${ }^{1,3}$, J.-P. Leburton ${ }^{1,3}$, D. Das ${ }^{2,3}$, and R. Martin ${ }^{2,3}$
1) Department of Electrical and Computer Engineering
2) Department of Physics
3) Beckman Institute for Advanced Science and Technology
University of Illinois at Urbana-Champaign
Urbana, IL 61801
Supported by the National Science Foundation under Award Number DMR-03 25939 ITR, via the Materials Computation Center at the University of Illinois at Urbana-Champaign Principal Investigators: Duane D. Johnson and Richard M. Martin

1. Motivation

mealistic simulation of exchange interaction in coupled QD devices - Interplay between device parameters and many-body physics in coupled QD

- Computational support for
interpretation of experimental data

2. Model

High resolution grid . Full 3D multiscale simulation with local spin density (500,000-700,000 approximation (LSDA) of the density-functional theory (DFT) for $\operatorname{dot}(\mathrm{s})$ region and semiclassical description of charge in the outside regions
Cylindrical grid

- Self-consistent solution of Kohn-Sham and Poisson equations on parallel platform

Rectangular grid

- Finite element method (FEM) with trilinear polynomials
- Exact diagonalization of the many-particle Schrodinger equation with realistic 3D confinement potentials

3. Flowchart

4. Goupled Lateral Q.Ds

Layout \& Stability Diagram
(Kouwenhoven, Marcus)

5. Triple LCVQDs

Split Gate Structure (Austing)

Singlet - Triplet Energy Separation
as a Function of Lefi/Right Gate Bias

$\frac{\text { Experimental }}{\text { Structure }}$

Singlet - Triplet Energy

Separation as a Function of Magnetic Field

Expansion of the two-particle wave-function into the product of the SP states

> Electron Dendate Elities

> Behavior of Jin B-field is determined by: Mixing of SP states with different angular momenta

> OR/AND
> - Decrease in the overlap between left and
> right dot wave-functions (HL).

Electron Charging Diagram
(Upper/Bottom Gates)

Electron Charging

 Diagram (Side Gates)

Ground-State Electron Densities

