
Abinit Abinit responseresponse--function capabilitiesfunction capabilities

• Many physical properties can  be formulated as derivatives of the DFT 
ground-state total energy with respect to parameters of the problem

• In the early days of electronic structure theory, these were generally 
obtained by numerical differentiation of the total energy

– This was cumbersome, computationally costly, and often not accurate.
• Analytic methods for evaluating derivatives have been developed for 

many cases.
– This is an ongoing effort.

• We’ve already dealt with some first derivatives which can be evaluated 
analytically from ground-state wave functions and densities.

• Many physical materials properties can be expressed as second 
derivatives, such as vibrational spectra and elastic constants.

• Some 3rd derivatives are within reach.
– Abinit can do Raman tensors, but we’re not going to go there.
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Perturbations and energy first derivativesPerturbations and energy first derivatives

• The simplest case – forces
– Derivatives wrt atomic coordinates
– Includes all periodic replicas                

• A more subtle case – stress
– Derivative wrt uniform strain tensor
– Correctly formulating the DFT energy as an analytic function of strain is 

difficult.

• A very subtle case (not yet encountered) – electric polarization P
– Derivative wrt uniform electric field of an extended energy functional,

– Principal difficulty – the electric field destroys the periodicity of the potential

• A  simpler periodicity-destroying case – atomic displacements with a 
different period,

– First derivatives wrt λ vanish
– Second derivatives wrt one q and one –q perturbation give phonons.
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Strain tensor Strain tensor hhabab as a perturbationas a perturbation

• Strain really only changes the positions of the atomic (pseudo)potentials,
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• However, this causes unique problems for perturbation expansions:
– Viewed in terms of the infinite lattice, the strain perturbation can never be 

small.

– From the point of view of a single unit cell, strain changes the periodic 
boundary conditions, so wave functions of the strained lattice cannot be 
expanded in terms of those of the unstrained lattice.

• Strain appears to be qualitatively different from other perturbations such 
as periodicity-preserving atomic displacements.



Reduced coordinate (~) formulationReduced coordinate (~) formulation

• Every lattice, unstrained or strained, is a unit cube in reduced coordinates.
– Primitive real and reciprocal lattice vectors define the transformations:

– Cartesian indices                        and reduced indices 

• Every term in the DFT functional can be expressed in terms of dot products 
and the unit cell volume W

– Dot products and W in reduced coordinates are computed with metric tensors,

• This trick reduces strain to a  “simple” parameter of a density functional 
whose wave functions have invariant boundary conditions.

– The only strain depencence is in the metric tensors.
– Conveniently, Abinit uses reduced coordinates throughout its code.
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Electrical polarization in insulatorsElectrical polarization in insulators

• The “dipole moment” definition of the polarization of a molecule
becomes ambiguous and useless in an infinite solid.

• The change in polarization when a parameter (eg., an atom position) is 
changed in a solid is well-defined and can be calculated by integrating 
the current induced when the parameter        is changed very slowly.

• Using 1st-order time-dependent perturbation theory for the wave 
function, taking the matrix elements of the current operator, and taking 
the zero-frequency limit of             , one can show
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Polarization, continuedPolarization, continued

• Now consider just the periodic part        of             
• It is the solution of the k-dependent Hamiltonian

• Two identities can be established which, along with the completeness 
relation for the j states, allow              to be expressed strictly in terms 
of occupied states,
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Polarization, continuedPolarization, continued

• The 2-dimensional            integral can be transformed 
by Stokes theorem into a contour integral.  (The  
integrals are simple averages.)

• If the phase of         is chosen to change continuously 
and obey the condition

where G is a reciprocal lattice vector, the      integrals cancel and only 
the     integrals at the end points contribute,
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• The quantity we are calculating here is called a “Berry phase.”

• When the BZ integral is replaced by a sum on a regular mesh, a finite-
difference approximation to             can be used, so the polarization 
can be expressed strictly in terms of ground-state wave functions.
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Density Functional Perturbation TheoryDensity Functional Perturbation Theory

• All quantities are expanded in power series in a DF energy parameter l,

• Solutions y (0) of Kohn-Sham equation minimize the usual DFT functional E(0)

• There is a variational functional for E(2)
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DFPT, continuedDFPT, continued

• The variational functional for E(2) is minimized by solutions y (1) of the self-
consistent Sternheimer equation

– where Pc is the projector on unoccupied states (conduction bands) and
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DFPT, continuedDFPT, continued

• Sternheimer equation for y (1) is solved using same techniques 
as ground-state Kohn-Sham equation
– Minimize residuals by conjugate-gradient method
– Constrain solutions to be orthogonal to occupied states
– No normalization, inhomogeneous term determines amplitude

• Converge first-order potential        by conjugate-gradient or 
mixing method

• Iterative steps for potential and wave functions alternate
– Wave functions never “start from scratch”
– Accurate wave-function convergence is never “wasted” on a poorly 

converged potential
• Variational 2nd-order energy decreases with iterations
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DFPT for metalsDFPT for metals

• Thermal smearing of the Fermi surface must be introduced for stability

• Density is defined with Fermi factor,
• Correct 1st-order density can be generated from wave functions 

satisfying a modified Sternheimer equation (simulating a statistical 
ensemble of determinental wave functions).(1)  Solution:

– Resembles ordinary finite-temperature perturbation theory for partially 
occupied states             , where c is chosen so that 

– Contributions from          treated as for insulators with Pc

(1) S. de Gironcoli, Phys. Rev. B 51, 6773 (1995)
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Strain perturbation for metalsStrain perturbation for metals

• For strain (or q=0 phonons), a first-order Fermi energy       must be 
introduced to preserve charge neutrality(1)

• “corrects” the 1st-order wave function found for constant       ,

• enters into the self-consistency cycle of the Sternheimer equation
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(1) S. Baroni, S. de Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001), 
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DFPT for elastic and piezoelectric tensorsDFPT for elastic and piezoelectric tensors

• Mixed 2nd derivatives of the energy with respect to pairs of perturbations 
– By the “2n+1” theorem, these only require one set of 1st order wave functions,

– This expression is non-stationary (i.e., 1st-order in convergence errors)

• To include atomic relaxation, we need strain      , electric field     and 
atomic coordinate       derivatives 

– Clamped-atom elastic tensor ------------

– Internal strain tensor -----------------------

– Interatomic force constants --------------

– Clamped-atom piezoelectric tensor ----

– Born effective charges ---------------------
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Electric field derivatives (more polarization)Electric field derivatives (more polarization)

• The energy acquires an extra term,

• Recall the Berry-phase expression for polarization, 
HKSE E= − ⋅PE

where we have dropped λ.
• The response-function calculation proceeds in 2 stages

– First, we use the RF machinery to calculate              by treating it as a first-
order wave function, solving the Sternheimer equation with

as the inhomogeneous 1st-order perturbation term on the right-hand side

– There in no self-consistent potential involved here.

– Next, we take the      derivative and       itself becomes the 
inhomogeneous Sternheimer term.

– In this second step, there is a self-consistent 1st-order screening potential.
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Incorporating atomic relaxationIncorporating atomic relaxation

• Introduce a model energy function quadratic in atomic displacements 
from a reference configuration, strain       , and electric field

• Various terms, all “bare” or clamped-atom quantities with atom indices 
m,n and Cartesian components                 are as follows:
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Incorporating atomic relaxation, continuedIncorporating atomic relaxation, continued

• The “relaxed atom” model energy function is defined as

– Additionally assume that              in the reference configuration
• Strain and electric field 2nd derivatives of      then yield the 

“dressed” or relaxed-atom elastic and piezoelectric tensors

– is the pseudo-inverse of the interatomic force constant matrix
– Various other quantities corresponding to differing boundary 

conditions such as fixed or zero polarization or stress, etc. can be 
calculated using the same approach 

natom 3
1 1

, , , , ,
1 1

( )mi mi nj nj
mn ij

C C Kαβ γδ αβ γδ αβ γδ
− −

= =

= +Ω Λ Λ∑ ∑
natom 3
1 1

, , , , ,
1 1

( )mi mi nj nj
mn ij

e e K Zαβ γ αβ γ αβ γ
− −

= =

= +Ω Λ∑ ∑

( ) { } ( ), min , ,
m

mu
H H u

α
αβ α α αβ αη η=E E

0mF α =
H

1K −



DPFT for periodic atomic displacementsDPFT for periodic atomic displacements

• Displacement

• First-order 
external potential

– PSP & model 
core charge 
contributions

• Sternheimer
equation

• 2nd-order energy 
(dynamical matrix)

– 2 atoms and 
directions
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Full phonon spectrumFull phonon spectrum

• Find dynamical matrix on a uniform mesh of q points
– q mesh should be commensurate with k mesh for GS wave functions

• FFT to create interatomic force constant matrix on a finite set of R
lattice points

– Density of q mesh determines maximum R calculated
– Should be short-ranged (a few unit cells)

• Now do “Slow” FT to get phonon energies at any q’s you want (such as 
on BZ symmetry lines)

Special treatment for polar insulators
• Dipole-dipole interactions are long-range
• This contribution to the dynamical matrix can be expressed analytically 

in terms of Born effective charges and the electronic dielectric tensor
• Subtract before the FFT, add back in after the Slow FT
• Contribution at         is non-analytic, and gives LO-TO splitting0→q



Index to Index to Abinit Abinit RF perturbationsRF perturbations



Response function code organizationResponse function code organization
abinit
driver
respfn

*.in
*_WFK

eltfr*
dyfr*

ipert1,idir1
ipert2,idir2

loper3 ipert1,idir1

scfcv3 istep

vtorho3
vtowfk3
cgwf3

ikpt
iband

converged?

done?

*_1WF

d2sym3,gath3,dyout3 *_DDB

nstwf*, nselt3, nstdy3 ipert2, idir2

end
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Sternheimer Eq.,


