ADbinit response-function capabilities

« Many physical properties can be formulated as derivatives of the DFT
ground-state total energy with respect to parameters of the problem

« In the early days of electronic structure theory, these were generally
obtained by numerical differentiation of the total energy

— This was cumbersome, computationally costly, and often not accurate.
« Analytic methods for evaluating derivatives have been developed for
many cases.
— This is an ongoing effort.

« We've already dealt with some first derivatives which can be evaluated
analytically from ground-state wave functions and densities.

« Many physical materials properties can be expressed as second
derivatives, such as vibrational spectra and elastic constants.

« Some 3 derivatives are within reach.
— Abinit can do Raman tensors, but we're not going to go there.

- L, Mat-Sim
% dp Research
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Perturbations and energy first derivatives

« The simplest case — forces
— Derivatives wrt atomic coordinates 7.
— Includes all periodic replicas 7, + Rl.

A more subtle case — stress
— Derivative wrt uniform strain tensor ﬂaﬁ
— Correctly formulating the DFT energy as an analytic function of strain is
difficult.
« A very subtle case (not yet encountered) — electric polarization P
— Derivative wrt uniform electric field of an extended energy functional,
E=E ,—¢-P
— Principal difficulty — the electric field destroys the periodicity of the potential

A simpler periodicity-destroying case — atomic displacements with a
different period, 7, + R, — 7+ R, + A"
— First derivatives wrt A vanish
— Second derivatives wrt one q and one —q perturbation give phonons.
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Strain tensor 77,;as a perturbation

= nll
e d

ossep

1
22 (o,

22 (D
i
=N

Strain really only changes the positions of the atomic (pseudo)potentials,

cell cell

Vo)=Y > V. (r-1-R)—— V1 (r)=) > V,[r-(A+n)-t-(1+n)-R].

However, this causes unique problems for perturbation expansions:

— Viewed in terms of the infinite lattice, the strain perturbation can never be
small.

— From the point of view of a single unit cell, strain changes the periodic
boundary conditions, so wave functions of the strained lattice cannot be
expanded in terms of those of the unstrained lattice.

Strain appears to be qualitatively different from other perturbations such
as periodicity-preserving atomic displacements.
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Reduced coordinate (~) formulation

* Every lattice, unstrained or strained, is a unit cube in reduced coordinates.
— Primitive real and reciprocal lattice vectors define the transformations:

X, = ZR;X:' , K,=(k,+G,)= ZGOP;i[%i ) ZRCIt)’iGCIt)’j = 27[51]

— Cartesian indices &, f3,---=1,3 and reduced indices i, j,---=1,3

« Every term in the DFT functional can be expressed in terms of dot products
and the unit cell volume Q

— Dot products and Q in reduced coordinates are computed with metric tensors,

’ _ v/= v ’ _ ! r _ — 1/2
X-X—ZXZ.HUXJ., K K—ZKZ.YU.KJ., Q = (det[Z, ])
i i

» This trick reduces strain to a “simple” parameter of a density functional
whose wave functions have invariant boundary conditions.

— The only strain depencence is in the metric tensors.
— Conveniently, Abinit uses reduced coordinates throughout its code.

= nll

|
¢
{
d

e
o
# 0
23 (D
S
=N

Lucent Technologies
Bell Labs Innovations



Electrical polarization in insulators

« The “dipole moment” definition of the polarization of a molecule
becomes ambiguous and useless in an infinite solid.

« The change in polarization when a parameter (eg., an atom position) is
changed in a solid is well-defined and can be calculated by integrating
the current induced when the parameter/I(t) is changed very slowly.

« Using 1st-order time-dependent perturbation theory for the wave
function, taking the matrix elements of the current operator, and taking
the zero-frequency limit of j(w)/@, one can show

+ C.C.

occ emptly
o (w | Bl ) (Wit [oV /04| wid)
az QZZZ

2
(7<)

— Why is the energy denominator squared?
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Polarization, continued

[ B ________________|
- Now consider just the periodic part U, of (r)=e""u; (r)
» ltis the solution of the k-dependent Hamiltonian

H,. (k,A)= —%(V+ik)2 + Vs (1, 4)

« Two identities can be established which, along with the completeness
relation for the ; states, allow BP/ 0/ to be expressed strictly in terms
of occupied states,

(Wi |Blwid) = (ui || 070K, Frs (, 2) |w),
(wi|omés oAl wis) = (]| /04, Hys (&, A) ||l ).

- TheA-integrated net change of the & component of the polarization is

0CC A A
AP, = _23Im dk_[ EZ&E
(27) Bz S0 S\ ok, |04
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Polarization, continued

*  The 2-dimensional (4., ) integral can be transformed A
by Stokes theorem into a contour integral. (The k, y | A=1
integrals are simple averages.) Vo
» If the phase of uli is chosen to change continuously -z/a r/a )
and obey the condition a Gr 1 1 <
Uy, (r)=e""u (r) A=0

where G is a reciprocal lattice vector, the A integrals cancel and only
the k integrals at the end points 4 =0,1 contribute,

ojc[<ué1‘ ’“/ak> < ‘ z_o/ak >]

« The quantity we are calculating here is called a “Berry phase.”

3 Jpz

When the BZ integral is replaced by a sum on a regular mesh, a finite-
difference approximation to aukl / dk, can be used, so the polarization
can be expressed strictly in terms of ground-state wave functions.
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Density Functional Perturbation Theory

« All quantities are expanded in power series in a DF energy parameter A,
X=X+ X0+ XD ..., X=E,T,V, v, (r),nr),E,, H

« Solutions y @ of Kohn-Sham equation minimize the usual DFT functional E©
g ‘W(O)> — O ‘ y/(0>>.
» There is a variational functional for £

occ

(2) 0). D1 — M [7(0) (0) (0) 0) 5,1
Eel {W 7W }_Z[<Wa ‘T +I/loc +I/non—loc_€0{ ‘WO{ >

o
M [ @ (1 (1) (1) 6] (0)
+ <l//05 ‘T + I/loc + I/non—loc + VHar + I/xc 1)”0( >
| TO+V0 V0 AV + V0 )
+HyO [T+ 410 ) |
2 2 2
_I_ld EHar _I_ld Exc _I_ld Elon—lon
2 2 2
2 dﬂ.« n(o) 2 dﬂ.« n(()) 2 dﬂv
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DFPT, continued

The variational functional for E® is minimized by solutions w of the self-
consistent Sternheimer equation

P(H" -e")P

)= H ),

— where P, is the projector on unoccupied states (conduction bands) and

W — M) 4 W 4 M
HY =T"+V, +V,.,

ext

o _ 0 OB,
090 on(r) 0

2
View = Vi +I 0 By

(1) ;o7 d ’
Hxc0 §n(r)5n(r/) n (r) r p

0CC

n(r)=> [W, Op (0)+ v, (0wl (n)].
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DFPT, continued

Sternheimer equation for () is solved using same techniques
as ground-state Kohn-Sham equation

— Minimize residuals by conjugate-gradient method
— Constrain solutions to be orthogonal to occupied states
— No normalization, inhomogeneous term determines amplitude

Converge first-order potential V. by conjugate-gradient or
mixing method

lterative steps for potential and wave functions alternate
— Wave functions never “start from scratch”

— Accurate wave-function convergence is never “wasted” on a poorly
converged potential

Variational 2"9-order energy decreases with iterations
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DFPT for metals

« Thermal smearing of the Fermi surface must be introduced for stability

. Density is defined with Fermi factor, 7(r) = D eV W, (1)

« Correct 1st-order density can be generated from wave functions
satisfying a modified Sternheimer equation (simulating a statistical
ensemble of determinental wave functions).(") Solution:

‘ (1)> P(H(O) 8(0)) PH(”‘ (0>>

,BiifFa‘ (O)>max(fm fF,b” )<W(O)‘H(l)‘§”cg{0)>

0 0 B
2 e
df,
(0) F.a (0) (1) (0)
~ fF o ‘ > <W,B ‘ H ‘ Wa >

0(

— Resembles ordinary finite-temperature perturbation theory for partially
occupied states &, 5 <c, where c is chosen so that f; ... =0

— Contributions from [ = ¢ treated as for insulators with P,

Rutgers (1) S. de Gironcoli, Phys. Rev. B 51, 6773 (1995)
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Strain perturbation for metals

» For strain (or =0 phonons), a first-order Fermi energy £’ must be
introduced to preserve charge neutrality(")

81(:1) _ Z<W£¢O) ‘H(l) ‘w(0)> dfF o Z dfF o

a<c a<c

- &\ “corrects” the 1st-order wave function found for constant &,

W)=y, - Ve

. 8§1)enters into the self-consistency cycle of the Sternheimer equation

8(1)

(0)
(0) fF N4 | >

(1) S. Baroni, S. de Gironcoli, and A. Dal Corso, Rev. Mod. Phys. 73, 515 (2001),
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DFPT for elastic and piezoelectric tensors

Mixed 2nd derivatives of the energy with respect to pairs of perturbations
— By the “2n+1” theorem, these only require one set of 15t order wave functions,
ocC

Ee(l/%ﬂz) — Z<l//é/12) (T(/%) 4+ A +VI-(chl()))‘ Wé0)> Non-self-

ext consistent
o

occ 1 aZE
n 0) | (7 A122) +V(Mz) O\ 4 2 Hie ,
;<WO{ ( ext )‘WOK > 2 aﬂ'laﬂz n(o)

— This expression is non-stationary (i.e., 18t-order in convergence errors)

To include atomic relaxation, we need strain 77,4, electric field £, and
atomic coordinate 7,; derivatives

— Clamped-atom elastic tensor ------------ azEel/anaﬂanyé‘
— Internal strain tensor ——-------------==mmm--- 0°E,, /01,507,
— Interatomic force constants -------------- J9’E,, /0,07,
— Clamped-atom piezoelectric tensor ---- 82Ee,/877aﬂ85j
— Born effective charges --------------------- O°E, [9F,0E,
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Electric field derivatives (more polarization)

= nil

e
i
1209
23 (D
S
2% N

The energy acquires an extra term, E=E,—E-P

Recall the Berry-phase expression for polarization,

0CC

e WO Y [TH )

(27)

where we have dropped A.
The response-function calculation proceeds in 2 stages

— First, we use the RF machinery to calculate|Vkuk,-> by treating it as a first-

order wave function, solving the Sternheimer equation with [Vkﬁ[KS (k)]‘ul(:)>
as the inhomogeneous 1st-order perturbation term on the right-hand side
— There in no self-consistent potential involved here.

— Next, we take the 5 derivative and |Vkuki> itself becomes the
inhomogeneous Sternheimer term.

— In this second step, there is a self-consistent 15t-order screening potential.
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Incorporating atomic relaxation

+ Introduce a model energy function quadratic in atomic displacements v, ,
from a reference configuration, strain 77, , and electric field &,

(-F/Q) ( K/Q -A/Q -Z/Q
Hun&)=(u n &) ¢ |[+|-A"/Q C —e
e -7'/Q e X E

» Various terms, all “bare” or clamped-atom quantities with atom indices
m,n and Cartesian components &, 5,7, are as follows:

Fma Atomic forces Caﬁ’ﬁ Elastic tensor

o Stress zZ y Born effective charges
Pa Electric polarization €5 Piezoelectric tensor
Kmam, Interatomic force constants X, Dielectric susceptibility
Ama ” “Force” internal strain tensor
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Incorporating atomic relaxation, continued

1HLoers
LA S 8-S LS
Lucent Technologies
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* The “relaxed atom” model energy function is defined as
ﬁ(ﬂaﬁvga) :%ni%H<uma9naﬁﬂga)

— Additionally assume that /7 =0 in the reference configuration

- Strain and electric field 2 derivatives of H then yield the
“dressed” or relaxed-atom elastic and piezoelectric tensors

natom 3

~ -1 -1
Caﬂ,75 = Caﬂ,75 +Q Z ZAmi,aﬂ(K )mi,njAnj,75

mn=1 ij=1
natom 3

~ . 1 1
eaﬂ,y — eaﬂ,y + Q Z ZAmi,aﬁ (K )mi,nj an,;/

mn=1 ij=1
— K7 'is the pseudo-inverse of the interatomic force constant matrix

— Various other quantities corresponding to differing boundary
conditions such as fixed or zero polarization or stress, etc. can be

calculated using the same approach
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Full phonon spectrum

Find dynamical matrix on a uniform mesh of q points
— ¢ mesh should be commensurate with k mesh for GS wave functions

FFT to create interatomic force constant matrix on a finite set of R
lattice points

— Density of ¢ mesh determines maximum R calculated

— Should be short-ranged (a few unit cells)

Now do “Slow” FT to get phonon energies at any q’s you want (such as
on BZ symmetry lines)

Special treatment for polar insulators
Dipole-dipole interactions are long-range

This contribution to the dynamical matrix can be expressed analytically
in terms of Born effective charges and the electronic dielectric tensor

Subtract before the FFT, add back in after the Slow FT
Contribution at 4 — 0 is non-analytic, and gives LO-TO splitting
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Index to Abinit RF perturbations

ipert idir  type  coord 1IWF* Voigt
1 I 9/ R 1
I 2 9fr R’ 2
I 3 9/t R’ 3
2 I 9/ex  R° 4
2 2 9/x R’ >
2 3 9/t R’ 6
natom+1 1 J / ok G’ 3*natom+1
natom+1 2 9/ ok G’ 3*natom+2
natom-+1 3 J / ok G’ 3*natom+3
natom+2 1 9/ R’ 3*natom+4
natom+2 2 /& R’ 3*natom+5
natom+2 3 9/ R’ 3*natom+6
natom+3 1 dfan XX 3*natom+7 1
natom+3 2 9/on vy 3*natom+8 2
natom+3 3 d/an zz 3*natom—+9 3
natom+4 1 9/on yZ 3*natom+10 4
W natom+4 2 o/on XZ 3*natom+11 5
I ,'LLL,%_’.BI? natom+4 3 5/9p Xy  3*natom+12 6 cont Tchnologies |
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Response function code organization

abinit

“rent

respfn

eltfr* ipertl, idirl (2)‘ >

dyfxr* <O‘H 0 Sternheimer Eq

°)

v (K|H™"|0)
A

scfcv3 l
A

vtorho3 Tkt

cgwf3

H(1)|O>—> nstwf*, nselt3, nstdy3 1pert2 idir2

(I

done?

d2sym3,gath3, dyout3 —W
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