

Introduction to input & output files

Linear-scaling DFT based on Numerical Atomic Orbitals (NAOs)

- Born-Oppenheimer
- DFT
- Pseudopotentials
- Numerical atomic orbitals
- Numerical evaluation of matrix elements

- relaxations, MD, phonons.
- LDA, GGA
- norm conserving, factorised.
- finite range

P. Ordejon, E. Artacho & J. M. Soler , Phys. Rev. B 53, R10441 (1996)J. M.Soler et al, J. Phys.: Condens. Matter 14, 2745 (2002)

What do we need?

- Access to the executable file: siesta
- An input file
 - Flexible Data Format (fdf) (A. García & J.M. Soler).
- A psedopotential file for each kind of element in the input file.
 - Unformatted binary (vps)
 - Formatted ASCII (.psf): more transportable and readable

Siesta package: (under license)

- Src: Sources of the Siesta code
- **Docs:** Documentation and user conditions
 - User's Guide (siesta.tex)
- Pseudo: ATOM program to generate and test pseudopotentials
- Examples: fdf and pseudopotentials input files for simple systems
- Utils: Programs or scripts to analyze the results

The input file

- Main input file:
 - Flexible Data Format (FDF)
 - Physical data of the system
 - Variables to control the approximations

FDF characteristics (II)

- Data can be given in any order
- Data can be omitted in favour of *default* values.
- Labels are case insensitive and characters `-´, `_´, `.´ are ignored:

LatticeConstant is equivalent to lattice_constant

- Text following **#** are comments
- You may 'include' other FDF files or redirect the search to another file

FDF characteristics (II)

•Syntax: 'data label' followed by its value

- •Character string:
- Integer:
- -Real:
- Logical:Physical magnitudes

SystemLabel NumberOfAtoms PAO.SplitNorm SpinPolarized LatticeConstant

h2o 3 0.15 .false. 5.43 Ang

•**Physical magnitudes:** followed by their units. *Many units are valid for the same magnitude* (m, cm, nm, Ang, Bohr). *There is an automatic conversion to the units required internally.*

• Character strings, NOT in apostrophes

FDF characteristics (III)

- Logical values: T / .true. / true / yes
 F / .false. / false / no
- Complex data structures: *blocks* %block label

%endblock label

Basic input variables

a) General system descriptors b) Structural and geometrical variables c) Functional and solution mehod d) Convergence of the results e) Self-consistency Basis set generation related variables.

General System description

SystemName: descriptive name of the system

SystemName Si bulk, diamond structure

SystemLabel: nickname to label output files

SystemLabel silicon

. . .

After a succesful run, you should have files like silicon.DM : *Density matrix* silicon.XV : *Final positions and velocities* silicon.EIG : *Eigen-energies*

SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 Geometrical and structural variables NumberOfAtoms: number of atoms in the simulation **NumberOfAtoms** 2 NumberOfSpecies: number of different atomic species **NumberOfSpecies** ChemicalSpeciesLabel: specify the different chemical species.

> %block ChemicalSpeciesLabel 1 14 Si %endblock ChemicalSpeciesLabel

ALL THESE VARIABLES ARE MANDATORY!!

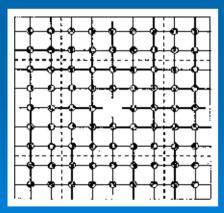
LatticeConstant: length to define the scale of the lattice vectors

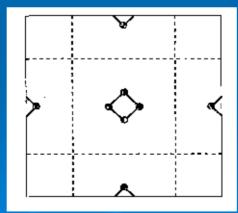
LatticeConstant

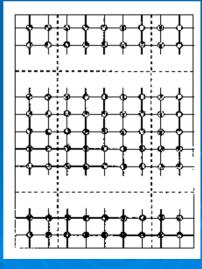
5.43 Ang

LatticeParameters: Crystallograhic way

%block LatticeParameters 1.0 1.0 1.0 60.0 60.0 60.0 %endblock LatticeParameters


LatticeVectors: read as a matrix, each vector being a line


%block LatticeVectors 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0 %endblock LatticeVectors


Periodic Boundary Conditions (PBC)

Atoms in the unit cell are periodically repeated throughout space along the lattice vectors

- Periodic systems and crystalline solids: $\sqrt{}$
- Aperiodic systems: Supercell approximation

Defects

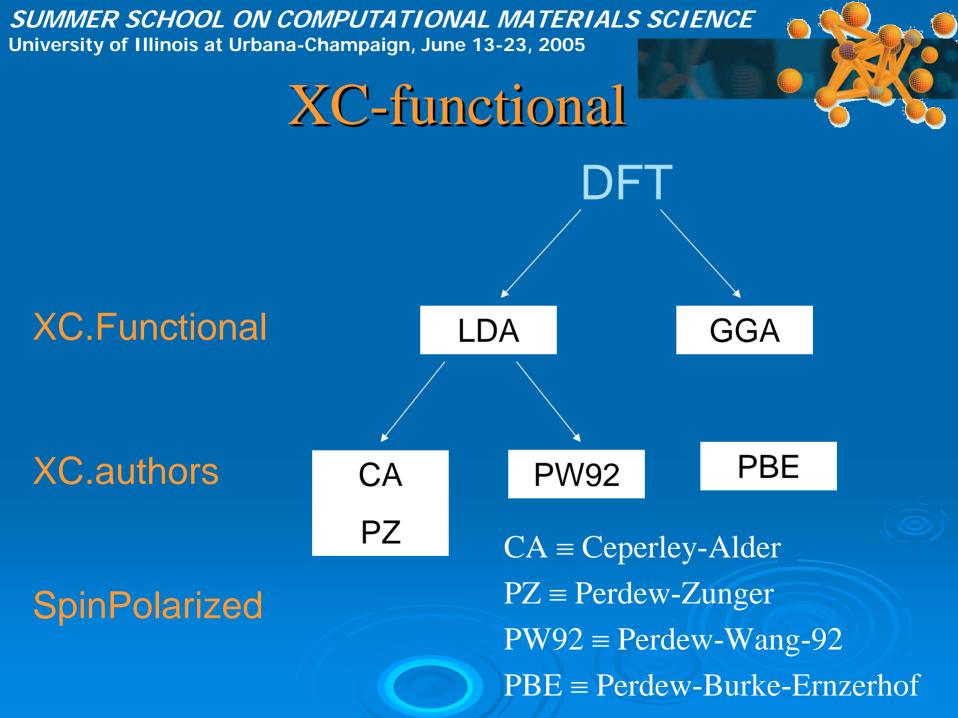
Molecules

Atomic Coordinates

AtomicCoordinatesFormat: format of the atomic positions in input:

Bohr: cartesian coordinates, in bohrs

Ang: cartesian coordinates, in Angstroms


ScaledCartesian: cartesian coordinates, units of the lattice constant

Fractional: referred to the lattice vectors

AtomicCoordinatesFormat Fractional

AtomicCoordinatesAndAtomicSpecies:

%block AtomicCoordinatesAndAtomicSpecies 0.00 0.00 0.00 1 Si 0.25 0.25 0.25 1 Si %endblock AtomicCoordinatesAndAtomicSpecies

Solution method

Two options to solve the electronic problem (Kohn-Sham equations)

From the atomic coordinates and the unit cell

Order N operations

 $(H-\varepsilon S)C=0$

 $\{\vec{R},\vec{a}\}$

Hamiltonian, H, and Overlap, S, matrices

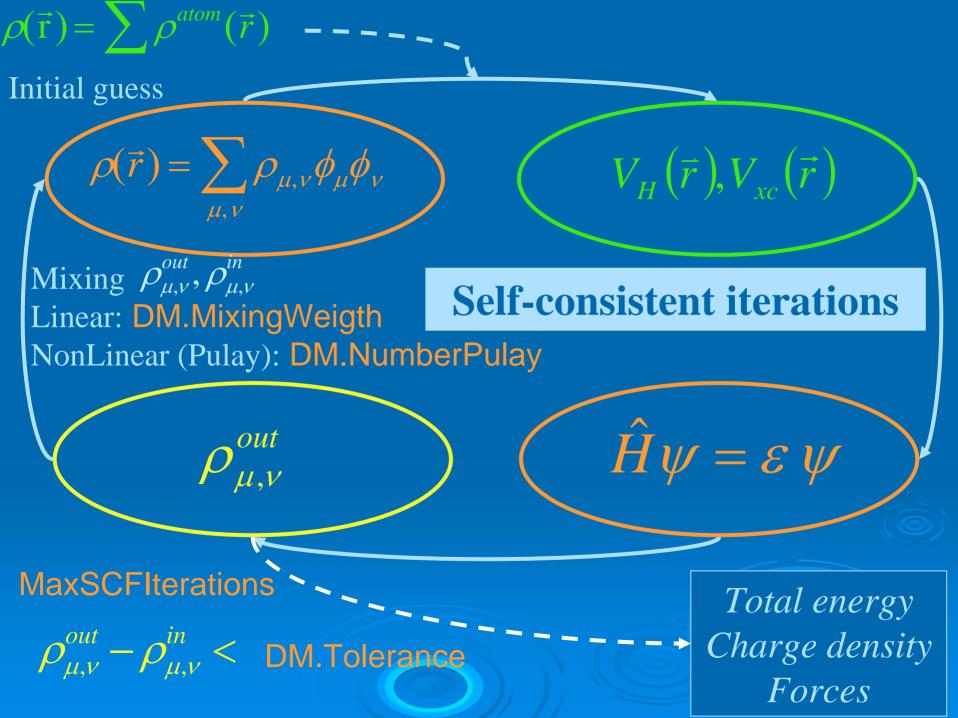
SolutionMethod

diagon

ordern

K-point sampling

Spetial set of k-points: Accurate results for a small # k-points:


Baldereschi, Chadi-Cohen, Monkhorst-Pack

kgrid_cutoff:

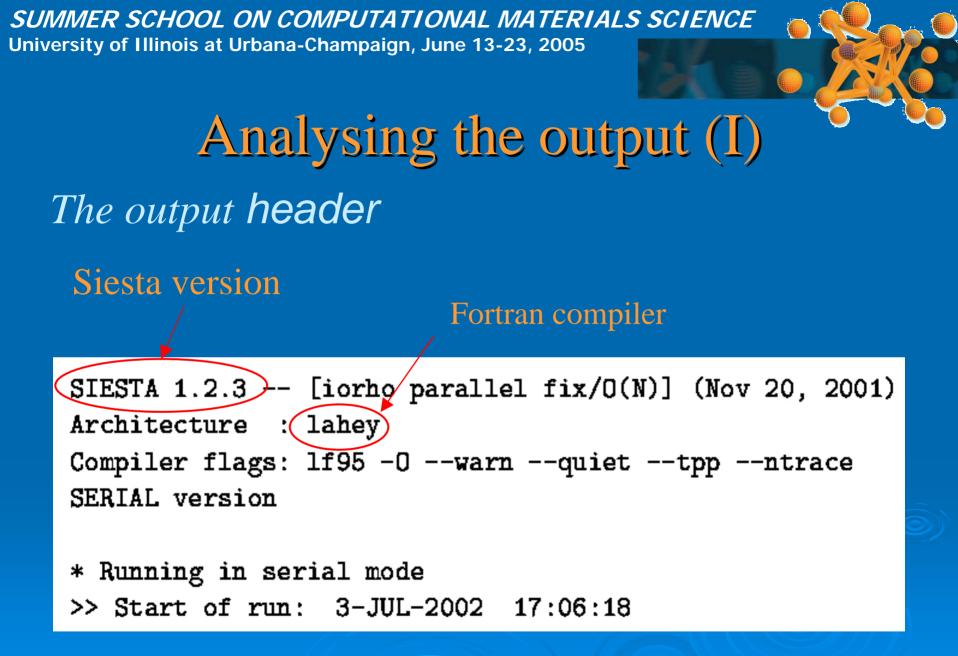
Kgrid_cutoff 10.0 Ang

kgrid_Monkhorst_Pack:

%block kgr	id_Mo	nkhors	t_Pack
4	0	0	0.5
0	4	0	0.5
0	0	4	0.5
%endblock	kgrid_	_Monkh	norst_Pack

How to run siesta

• To run the serial version:

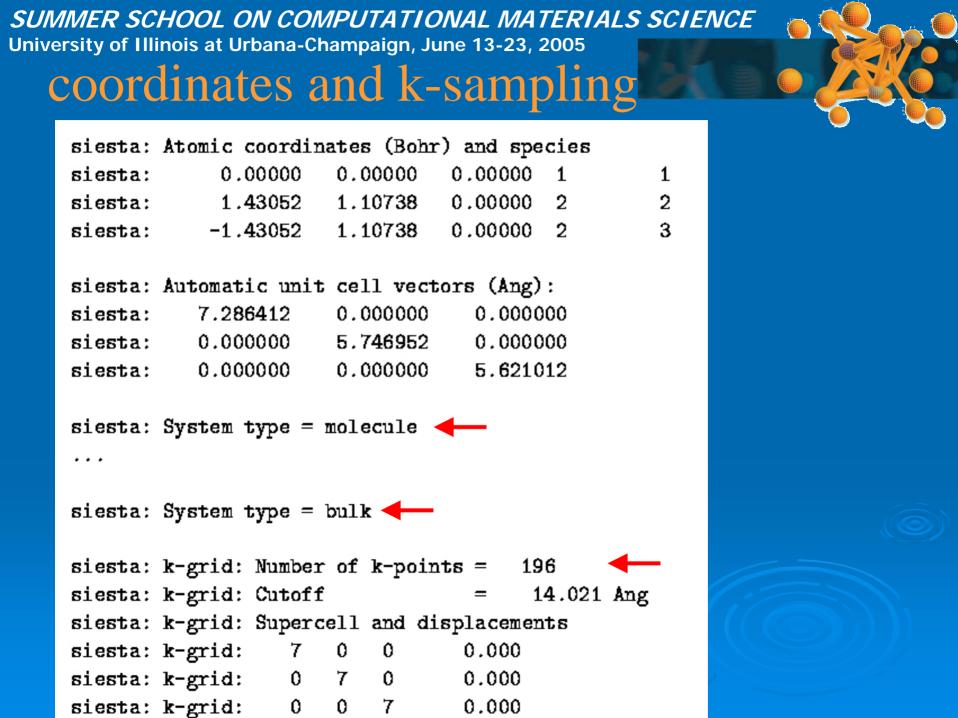

[path]/siesta < input.fdf > output &

• To see the information dumbed in the output file while it runs

tail -f output

• Alternatively:

[path]/siesta < input.fdf | tee ouput


Analysing the output (II) *dumping the input file*

*: ***********************************
SystemName Water molecule
SystemLabel h2o
NumberOfAtoms 3
NumberOfSpecies 2
%block ChemicalSpeciesLabel
1 8 0 # Species index, atomic number, species label
2 1 H
%endblock ChemicalSpeciesLabel
AtomicCoordinatesFormat Ang
%block AtomicCoordinatesAndAtomicSpecies
0.000 0.000 0.000 1
0.757 0.586 0.000 2
-0.757 0.586 0.000 2
%endblock AtomicCoordinatesAndAtomicSpecies
*: ***********************************

prinput: *****

bi mban, analas	
<pre>coor: Atomic-coordinates input format =</pre>	Cartesian coordinates
coor:	(in Angstroms)
redata: Number of spin components =	• 1
redata: Long output =	· F
redata: Number of Atomic Species =	- 2
redata: Charge density info will appear in	.RHO file
redata: Write Mulliken Pop. =	• NO
redata: Mesh Cutoff =	50.0000 Ry
redata: Net charge of the system =	• 0.0000 e
redata: Max. number of SCF Iter =	50
redata: Mixing is linear	
redata: Mix DM in first SCF step ? =	F
redata: Write Pulay info on disk? =	F
redata: New DM Mixing Weight =	0.2500
redata: No kicks to SCF	
redata: DM Mixing Weight for Kicks =	0.5000
redata: DM Tolerance for SCF =	0.000100
redata: Use continuation files for DM =	F
redata: Neglect nonoverlap interactions =	F
redata: Method of Calculation =	Diagonalization
redata: Electronic Temperature =	0.0019 Ry
redata: Fix the spin of the system =	F
redata: Dynamics option =	· Verlet MD run
redata: Initial MD time step =	: 1
redata: Final MD time step =	• 1
redata: Length of MD time step =	1.0000 fs
redata: Length of MD time step =	= 1.0000 fs
redata: Initial Temperature of MD run =	• 0.0000 К
redata: Perform a MD quench =	F
redata: ***********************************	*******

processing the input

SUM	IMER SCHOOL (ON COMPUTATIONAL MATERIALS SCIENC	
	Outp	ut: First MD step	
	siesta: ===== siesta: B siesta: =====	egin MD step = 1	
		$32 \times 30 \times 24 = 23040$ utoff (required, used) = 50.000 50.384 Ry	7 —
	* Maximum dynami	c memory allocated = 3 MB	
	siesta: Program'	s energy decomposition (eV):	
	siesta: Eions	= 815.854478	
	siesta: Ena	= 175.154399	
	siesta: Ekin	= 341.667405	
	siesta: Enl	= -52.736793	
	siesta: DEna	= -0.000001	
	siesta: DUscf	= 0.000000	
	siesta: DUe x t	= 0.000000	
	siesta: Exc	= -109.951257	
	siesta: eta*DQ	= 0.000000	
	siesta: Emadel	= 0.000000	
	siesta: Eharris	= -466.430254	
	siesta: Etot	= -461.720725	
	siesta: FreeEng	= -461.720725	

Ó

SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE Output: Self-consistency

siesta:	iscf	Eharris(eV)	E_KS(eV)	FreeEng(eV)	dDmax Ef(eV)
siesta:	1	-466.4303	-461.7207	-461.7207	1.4383 -4.2475
timer: 1	Routin	e,Calls,Time	,% = IterSCE	r 1	7.930 72.22
siesta:	2	-466.8703	-465.2425	-465.2425	0.1755 -0.1474
siesta:	3	-465.9264	-465.4655	-465.4655	0.0515 -1.5862
siesta:	4	-465.8472	-465.5656	-465.5656	0.0176 -1.9935
siesta:	5	-465.8397	-465.6346	-465.6346	0.0087 -2.1116
siesta:	6	-465.8388	-465.6857	-465.6857	0.0083 -2.1448
siesta:	7	-465.8387	-465.7240	-465.7240	0.0067 -2.1531
siesta:	8	-465.8387	-465.7527	-465.7527	0.0051 -2.1545
siesta:	9	-465.8387	-465.7742	-465.7742	0.0038 -2.1543
siesta:	10	-465.8387	-465.7903	-465.7903	0.0028 -2.1539
siesta:	11	-465.8387	-465.8024	-465.8024	0.0021 -2.1535
siesta:	12	-465.8387	-465.8115	-465.8115	0.0016 -2.1533
siesta:	13	-465.8387	-465.8183	-465.8183	0.0012 -2.1531
siesta:	14	-465.8387	-465.8234	-465.8234	0.0009 -2.1530
siesta:	15	-465.8387	-465.8272	-465.8272	0.0006 -2.1530
siesta:	16	-465.8387	-465.8301	-465.8301	0.0005 -2.1530
siesta:	17	-465.8387	-465.8322	-465.8322	0.0004 -2.1530
siesta:	18	-465.8387	-465.8338	-465.8338	0.0003 -2.1530
siesta:	19	-465.8387	-465.8351	-465.8351	0.0002 -2.1530
siesta:	20	-465.8387	-465.8360	-465.8360	0.0001 -2.1530
siesta:	21	-465.8387	-465.8367	-465.8367	0.0001 -2.1530
siesta:	22	-465.8387	-465.8372	-465.8372	0.0001 -2.1530

Output: Eigenvalues, forces, stress

siesta:	<u> </u>	lues (e	V):			
	-24.74	-12.70	-8.71	-6.23	1.68	4.09
	14.68	21.97	24.22	27.21	28.65	32.19
	49.89	70.65	96.18			
siesta:	Atomic	forces	(eV/Ang	;):		
siesta:	1	0.0000	01 -0	.504870	0.0	00000
siesta:	2	0.7196	64 0	.279830	0.0	00000
siesta:	3	-0.7196	63 0	. 279829	0.0	00000
siesta:						
siesta:	Tot	0.0000	02 0	.054788	0.0	00000
siesta:	Stress	tensor	(eV/Ang	;**3):		
siesta:	-0.0	12622	0.000	000	0.00000	0
siesta:	0.0	00000	-0.002	2309	0.00000	0
siesta:	0.0	00000	0.000	000	0.01400	0

(eV):

siesta:	Fermi e	ner	gy =	-2.152975 e	V
siesta:	Program	's	energy	decomposition	(6
siesta:	-Eions	=	-81	5.854478	
siesta:	Ena	=	17	5.154399	
siesta:	Ekin	=	350	0.784945	
siesta:	Enl	=	-6:	1.958840	
siesta:	DEna	=	-:	1.777979	
siesta:	DUscf	=	(0.727284	
siesta:	DUext	=	(0.000000	
siesta:	Exc	=	-11:	2.912881	
siesta:	eta*DQ	=	(0.000000	
siesta:	Emadel	=	(0.000000	
siesta:	Ekinion	=	(0.000000	
siesta:	Eharris	=	-46	5.839084	
siesta:	Etot	=	-46	5.837551	
siesta:	FreeEng	=	-46	5.837551	

siesta:	Final energy (eV):	:
siesta:	Kinetic =	350.784945
siesta:	Hartree =	382.616610
siesta:	Ext. field =	0.000000
siesta:	Exchcorr. =	-112.912881
siesta:	Ion-electron =	-1072.820417
siesta:	Ion-ion =	-13.505807
siesta:	Ekinion =	0.000000
siesta:	Total =	-465.837551

Output: Total energy

timer: CPU execution times:						
timer:	Routine	Calls	Time/call	Tot.time	%	
timer:	siesta	1	13.660	13.660	100.00	
timer:	Setup	1	0.850	0.850	6.22	
timer:	bands	1	0.000	0.000	0.00	
timer:	KSV_init	1	0.000	0.000	0.00	
timer:	IterMD	1	12.800	12.800	93.70	
timer:	hsparse	2	0.005	0.010	0.07	
timer:	overfsm	2	1.095	2.190	16.03	
timer:	IterSCF	23	0.461	10.600	77.60	
timer:	kinefsm	2	1.010	2.020	14.79	
timer:	nlefsm	2	2.780	5.560	40.70	
timer:	DHSCF	23	0.128	2.950	21.60	
timer:	DHSCF1	1	0.060	0.060	0.44	
timer:	DHSCF2	1	0.190	0.190	1.39	
timer:	REORD	186	0.001	0.130	0.95	
timer:	POISON	24	0.020	0.480	3.51	
timer:	DHSCF3	23	0.110	2.520	18.45	
timer:	rhoofd	23	0.030	0.690	5.05	
timer:	CELLXC	23	0.027	0.610	4.47	
timer:	vmat	23	0.018	0.410	3.00	
timer:	diagon	22	0.002	0.050	0.37	
timer:	rdiag	22	0.002	0.040	0.29	
timer:	DHSCF4	1	0.180	0.180	1.32	
timer:	dfscf	1	0.150	0.150	1.10	

>> End of run: 3-JUL-2002 17:06:32

Output: timer

Saving & reading information (I)

Some information is stored by Siesta and can be used to restart the simulations from previous a run:

- Density matrix:
- Localized wave functions (Order-N):
- Atomic positions and velocities:
- CG history (minimizations):

DM.UseSaveDM ON.UseSaveLWF MD.UseSaveXV MD.UseSaveCG

All of them are logical variables (and save lots of time!!)

Saving & reading information (II)

Information needed as input for various post-processing programs, for example, to visualize:

- •Total charge density:
- •Deformation charge density:
- •Electrostatic potential:
- •Total potential:
- •Local density of states:
- •Charge density contours:
- •Atomic coordinates:

SaveRho **SaveDeltaRho SaveElectrostaticPotential SaveTotalPotential** LocalDensityOfStates WriteDenchar WriteCoorXmol and WriteCoorCerius

All of them are logical variables

Analyzing the electronic structure (I)

- Band structure along the high symetry lines of the BZ
 - BandLineScale: scale of the k vectors in BandLines

BandLinesScale pi/a

• **BandLines:** lines along with band energies are calculated.

%block BandLines

 1
 1.000
 1.000
 1.000

 20
 0.000
 0.000
 0.000

 25
 2.000
 0.000
 0.000

 30
 2.000
 2.000
 2.000

 %endblock
 BandLines

L \Gamma X \Gamma

Analyzing the electronic structure (II) Density Of States: total and projected on the atomic orbitals

- Compare with experimental spectroscopy
- Bond formation

$$\begin{split} g\left(\epsilon\right) &= \sum_{i} \sum_{\mathbf{k}} \delta\left(\epsilon - \epsilon_{i}\left(\mathbf{k}\right)\right) \\ &\simeq \sum_{i} \sum_{\mathbf{k}} \frac{1}{\sigma\sqrt{\pi}} exp\left(-\frac{\left(\epsilon - \epsilon_{i}\left(\mathbf{k}\right)\right)^{2}}{\sigma^{2}}\right) \end{split}$$

• ProjectedDensityOfStates:

%block ProjectedDensityOfStates -20.00 10.00 0.200 500 eV %endblock ProjectedDensityOfStates

Lower energy

Higher energy

width

points

Analyzing the electronic structure (III)

Population analysis: Mulliken prescription

- Amounts of charge on an atom or in an orbital inside the atom
- Bond formation
- Be careful, very dependent on the basis functions

WriteMullikenPop

- 0 = None
- 1 = Atomic and orbitals charges
- 2 = 1 + atomic overlap pop.
- 3 = 2 + orbital overlap pop.

Utilities (I)

Various post-processing tools:

• PHONONS

- Finite differences: VIBRA (P. Ordejón)
- Linear response: LINRES (M. Pruneda et al.)
- Interphase with Phonon program (Parlinsky)
- Visualization of the CHARGE DENSITY and POTENTIALS
 - -3D: PLRHO (J. M. Soler), grid2cube, grid2xfs, ...
 - -2D: CONTOUR (E. Artacho)
 - -2D: DENCHAR (J. Junquera)

- TRANSPORT PROPERTIES:
 - TRANSIESTA (M. Brandbydge et al.),
 - **SMEAGOL** (S. Sanvito *et. al.*)
- PSEUDOPOTENTIAL and BASIS information:
 - PyAtom (A. García).
- XML output:
 - Visualization of the ouput (J. Wakelin & A. García).
 - PDOS-xml tool (A. García)
- ATOMIC COORDINATES:
 - Sies2arc (J. Gale)