SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE

University of Illinois at Urbana-Champaign, June 13-23, 2005

# Pseudopotentials and Basis Sets

How to generate and test them

## Pseudopotential idea

**Atomic Si** 



Core electrons... highly localized very depth energy ... are chemically inert



Valence wave functions must be orthogonal to the core wave functions



# The "atom" program

#### "pseudopotential generation" label





• Run the shell script (pg.sh)

\$ pg.sh Si.tm2.inp Calculation for Si.tm2 completed. Output in directory Si.tm2

#### • Check contents of new directory (Si.tm2)

| \$ ls Si.tm2 |          |         |         |            |              |  |  |  |
|--------------|----------|---------|---------|------------|--------------|--|--|--|
| AECHARGE     | AEWFNR3  | PSLOGD3 | PSPOTR3 | PSWFNR3    | charge.gplot |  |  |  |
| AELOGDO      | CHARGE   | PSPOTQO | PSWFNQO | RHO        | charge.gps   |  |  |  |
| AELOGD1      | INP      | PSPOTQ1 | PSWFNQ1 | SCRPSPOTRO | pots.gplot   |  |  |  |
| AELOGD2      | OUT      | PSPOTQ2 | PSWFNQ2 | SCRPSPOTR1 | pots.gps     |  |  |  |
| AELOGD3      | PSCHARGE | PSPOTQ3 | PSWFNQ3 | SCRPSPOTR2 | pseudo.gplot |  |  |  |
| AEWFNRO      | PSLOGDO  | PSPOTRO | PSWFNRO | SCRPSPOTR3 | pseudo.gps   |  |  |  |
| AEWFNR1      | PSLOGD1  | PSPOTR1 | PSWFNR1 | VPSFMT     | pt.gplot     |  |  |  |
| AEWFNR2      | PSLOGD2  | PSPOTR2 | PSWFNR2 | VPSOUT     | pt.gps       |  |  |  |

#### • Plot the pseudo-potentials/orbitals

\$ cd Si.tm2

\$ gnuplot pseudo.gps

==> Postscript output in pseudo.ps

Procedure (II)

## Pseudo-wave function



**Pseudopotential** 



### Logarithmic derivative

Radial

**Fourier-T** 

## Procedure (III)



# Radial charge distribution:

### • Compare all-electron with pseudo-charge



## Pseudopotential testing (I)

The *all-electron* (ae.sh) and *pseudo-test* (pt.sh) scripts:

| pt Si Test 3s0 3p3 3d1 |
|------------------------|
| Si ca                  |
| 0.0                    |
| 3 3                    |
| 3 0 0.00               |
| 3 1 3.00               |
| 3 2 1.00               |
|                        |

sh ../pt.sh Si.test.inp Si.tm2.vps Output data in directory Si.test-Si.tm2...

## Pseudopotential testing (II)

| \$ cd Si.te<br>\$ ls [A-Z]<br>AECHARGE<br>AEWFNRO                   | st-Si.tm2<br>*<br>AEWFNR1 CHA<br>AEWFNR2 INP                   | RGE OUT<br>PTCHARGE                                     | PTWFNRO<br>PTWFNR1          | PTWFNR2<br>RHO                   | VPSIN                            |                                                                                                   |
|---------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|-----------------------------|----------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| <pre>\$ ## EIGEN \$ \$ grep '&amp;v ATM3 3s 0.0 3p 0.0 3d 0.0</pre> | VALUE TEST<br>' OUT<br>11-JUL-02<br>0.0000<br>3.0000<br>1.0000 | Si Test 3s<br>-1.14358268<br>-0.60149474<br>-0.04725203 | 0 3p3 3d1<br>3.<br>2.<br>0. | 71462770<br>68964513<br>46423687 | A tra<br>will r<br>energ<br>func | nsferable pseudo<br>reproduce the AE<br>by levels and wave<br>stions in arbitrary<br>environments |
| ATM3<br>1s 0.0<br>2p 0.0<br>3d 0.0                                  | 11-JUL-02<br>0.0000<br>3.0000<br>1.0000                        | Si Test 3s<br>-1.14353959<br>-0.59931810<br>-0.04733135 | 0 3p3 3d1<br>0.<br>0.<br>0. | 56945741<br>95613808<br>45664551 |                                  |                                                                                                   |

levels and wave

### Pseudopotential testing (III)

- Compute the energy of two different configurations
- Compute the difference in energy
- For the pseudopotential to be transferible:

| &d | total | energy | differences | s in se | eries      |           |
|----|-------|--------|-------------|---------|------------|-----------|
| &d |       | 1      | 2           | 3       | 4          | 5         |
| &d | 1     | 0.0000 |             |         | Λ Τ        | $\neg AE$ |
| &d | 2     | 0.4308 | 0.0000      |         | $\Delta I$ |           |
| &d | 3     | 0.4961 | 0.0653      | 0.000   | )          | -         |
| &d | 4     | 0.9613 | 0.5305      | 0.4652  | 2 0.0000   |           |
| &d | 5     | 1.4997 | 1.0689      | 1.0030  | 0.5384     | 0.0000    |
| &d |       | 1      | 2           | 3       | 4          | 5         |
| &d | 1     | 0.0000 |             |         | A 7        | $\neg PS$ |
| &d | 2     | 0.4299 | 0.0000      |         | $\Delta h$ |           |
| &d | 3     | 0.4993 | 0.0694      | 0.000   | )          |           |
| &d | 4     | 0.9635 | 0.5336      | 0.4642  | 2 0.0000   |           |
| &d | Б     | 1 5044 | 1 0745      | 1 0051  | 0 5400     | 0 0000    |

ions  $E_{C1}$   $E_{C2}$  $\Delta E = E_{C2} - E_{C1}$  $\Delta E^{AE} = \Delta E^{PS}$ 

 $\begin{array}{l} \rightarrow 3s^2 \ 3p^2 \quad \mbox{(reference)} \\ \rightarrow 3s^2 \ 3p^1 \ 3d^1 \\ \rightarrow 3s^1 \ 3p^3 \\ \rightarrow 3s^1 \ 3p^2 \ 3d^1 \\ \rightarrow 3s^0 \ 3p^3 \ 3d^1 \end{array}$ 

### Large core-valence overlap



Errors due to non-linearity of XC-potential

### Non-linear core corrections

Standard pseudopotential unscreening: Valence charge only

$$V^{ps} = V^{ps}_{scr}[\rho_{v}](r) - V_{H}[\rho_{v}](r) - V_{xc}[\rho_{v}](r)$$

However...

$$V_{xc}[\rho_{v} + \rho_{c}](r) \neq V_{xc}[\rho_{v}](r) + V_{xc}[\rho_{c}](r)$$

Keep core charge in pseudopotential generation

$$\widetilde{V}_{xc} = V_{xc}[\rho_{v}] + \{V_{xc}[\rho_{v} + \rho_{c}] - V_{xc}[\rho_{v}]\}$$

$$V^{ps}(r) = V^{ps}_{scr}[\rho_{v} + \rho_{c}](r) - V_{H}[\rho_{v}](r) - V_{xc}[\rho_{v} + \rho_{c}](r)$$

# PCC input file

#### New flag



### Pseudo-core & pseudo-valence charge



### Smooth Fourier Transform

The real-space grid required fineness depends on how you define the pseudopotential. The *meshcutoff* parameter can be determined from the Fourier Transform.

Cutoff = 
$$(q_{\text{max}})^2$$



# **Basis generation**



"Divide and Conquer" W. Yang, Phys. Rev. Lett. 66, 1438 (1992)

$$\phi_{Ilm}(\vec{r}) = R_{Il}(r_I) Y_{lm}(\hat{r}_I) \qquad \vec{r}_I = \vec{r} - \vec{R}_I$$

- <u>Numerical Atomic Orbitals (NAOs)</u>: *Numerical solution of the KS Hamiltonian for the isolated pseudoatom with the same approximations (xc, pseudos) as for the condensed system*
- Very efficient
- Lack of systematic for convergence
- Main features:
  - Size or number of functions
     Range of localization of these functions
     Shape or functional form used.

## Basis Size (I)

Depends on the required accuracy and available computational power

Quick and dirty calculations

### Highly converged calculations

Minimal basis set (single- $\zeta$ ; SZ)

Complete multiple- $\zeta$ Polarization

**Diffuse** orbitals

# Basis Size (II): improving

One single radial function per angular momentum shell occupied in the free-atom. Single-ζ (minimal or SZ) Improving the quality?

Radial flexibilization:Add more than one radial functionwithin the same angularmomentum shellMultiple-ζ

Angular flexibilization: Add shells of different angular momentum

Polarization

## Examples

| Atom | Valence       | SZ        |            |          | DZ          | Р          |                   |  |
|------|---------------|-----------|------------|----------|-------------|------------|-------------------|--|
|      | configuration |           |            |          |             |            |                   |  |
|      |               | # orbital | s symmetry | # orbita | ls symmetry | # orbitals | symmetry          |  |
| Si   | $3s^2 \ 3p^2$ | 1         | S          | 2        | s           | 1          | $d_{xy}$          |  |
|      |               | 1         | $p_x$      | 2        | $p_x$       | 1          | $d_{yz}$          |  |
|      |               | 1         | $p_y$      | 2        | $p_y$       | 1          | $d_{zx}$          |  |
|      |               | 1         | $p_z$      | 2        | $p_z$       | 1          | $d_{x^2-y^2}$     |  |
|      |               |           |            |          |             | 1          | $d_{\Im z^2-r^2}$ |  |
|      | Total         | 4         |            | 8        |             | (DZ+P) 13  | 1                 |  |
|      |               |           |            |          |             |            |                   |  |
| Atom | Valence       |           |            |          |             |            |                   |  |

| Atom | Valence       |     |          |                |   |          |                |    |          |          |
|------|---------------|-----|----------|----------------|---|----------|----------------|----|----------|----------|
|      | configuration |     |          |                |   |          |                |    |          |          |
|      |               | # • | orbitals | symmetry       | # | orbitals | symmetry       | #  | orbitals | symmetry |
| Fe   | $4s^2 \ 3d^6$ |     | 1        | S              |   | 2        | S              |    | 1        | $p_x$    |
|      |               |     | 1        | $d_{xy}$       |   | 2        | $d_{xy}$       |    | 1        | $p_y$    |
|      |               |     | 1        | $d_{yz}$       |   | 2        | $d_{yz}$       |    | 1        | $p_z$    |
|      |               |     | 1        | $d_{zx}$       |   | 2        | $d_{zx}$       |    |          |          |
|      |               |     | 1        | $d_{x^2-y^2}$  |   | 2        | $d_{x^2-y^2}$  |    |          |          |
|      |               |     | 1        | $d_{3z^2-r^2}$ |   | 2        | $d_{3z^2-r^2}$ |    |          |          |
|      | Total         |     | 6        |                |   | 12       |                | (D | Z+P) 15  |          |

### Basis Size (III): Polarization

#### **Perturbative polarization**

Apply a small E field to the orbital we want to polarize

S

### **Atomic polarization**

Solve Schrödinger equation for higher angular momentum

unbound in the free atom  $\Rightarrow$  require short cut offs



E. Artacho et al, Phys. Stat. Sol. (b), 215, 809 (1999)

## Basis Size (IV): Convergence Bulk Si

### Cohesion curves

#### PW and NAO convergence



### Range (I): How to get sparsity for $O(\tilde{n})$

- Neglecting interactions below a tolerance or beyond some scope of neighbours ⇒ numerical instablilities for high tolerances.
- Strictly localized atomic orbitals (zero beyond a given cutoff radius,  $r_c$ )

 Accuracy and computational efficiency depend on the range of the atomic orbitals.

• Way to define all the cutoff radii in a balanced way.

## Range (II): Energy Shift

### Easy approach to define the cutoff radii for the NAOs:

$$\left[-\frac{1}{2r}\frac{d^2}{dr^2}r + \frac{l(l+1)}{2r^2} + V_l(r)\right]\phi_l(r) = (\varepsilon_l + \delta\varepsilon_l)\phi_l(r)$$

A single parameter for all cutoff radii...

E. Artacho et al. Phys. Stat. Solidi (b) 215, 809 (1999)



#### Fireballs

O. F. Sankey & D. J. Niklewski, Phys. Rev. B 40, 3979 (1989)

...BUT, a different cutoff radius for each orbital

## Range (II): Convergence



### Bulk Si

### equal s, p orbitals radii

J. Soler et al, J. Phys: Condens. Matter, 14, 2745 (2002)



The radial function shape is mainly determined by the pseudopotential.

Extra parameters can be introduced to add flexibility:

•  $\delta Q$  : extra charge per atomic specie.

• **Confinement** : imposed separately for each angular momentum shell.



Shape (II)

Soft confinement

(J. Junquera et al, Phys. Rev. B 64, 235111 (01))

Shape of the optimal **3***s* orbital of Mg in MgO for different schemes

Corresponding optimal confinement potential

•Better variational basis sets

•Removes the discontinuity of the derivative

## PAO.Basis (I)

Add polarization %block PAO.Basis # Define Basis set # Species label, number of I-shells Cu 4sn=4 # n, I, Nzeta, Polarization, NzetaPol 5.200 5.500 Rc 1.000 1.000 2 n=3 2 # n, l, Nzeta 3.541 4.991 Rc 1.000 1.000 nd 🖌 %endblock PAO.Basis

SUMMER SCHOOL ON COMPUTATIONAL MATERIALS SCIENCE University of Illinois at Urbana-Champaign, June 13-23, 2005 PAO.Basis (II): new generation %block PAO.Basis # Define Basis set 0.10660 Cu 3 5.78489 0.96502 n=4 0 Ε 5.10647 1.00000 0.48813 Ε 2.51950 n=4 1 1 Polarization 4.97570 orbital 1.00000 3.07629 1 4.30968 n=3 2 Ε 4.99958 1.00000 %endblock PAO.Basis

# Procedure

- 1. Check the difference in energies involved in your problem
- 2. For semiquantitative results and general trends use SZ
- 3. Improve the basis:
  - Automatic DZP (Split Valence & Perturbative Polarization):
    - High quality for most systems
    - Good valence between well converged results & computational cost
    - 'Standard'
  - Rule of thumb in Quantum Chemistry: *« a basis should always be doubled before being polarized ».*
- 4. Functional optimization of the basis

### **Pseudos & Basis repository**

- Pseudopotentials and basis sets available in the SIESTA web page: www.uam.es/siesta
  - Uploaded by users
  - input files to generate them
  - Plots of the radial functions
  - Documentation of the tests done
  - Author's contact information
  - The PAO is pseudopotential-dependent.

• Check also in the user's mailing list.