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electrons in an external potentialInteracting

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 2



R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 3



The basis of most modern calculations
Density Functional Theory (DFT)

• Hohenberg-Kohn (1964)

• All properties of the many-body system are determined by 
the ground state density n0(r)

• Each property is a functional of the ground state density 
n0(r) which is written as  f [n0]

• A functional f [n0] maps a function to a result: n0(r) → f
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The Hohenberg-Kohn Theorems

n0(r) → Vext(r)   (except for constant) 
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The Hohenberg-Kohn Theorems

Minimizing E[n] for a given Vext(r) → n0(r) and E
In principle, one can find all other properties and 
they are functionals of n0(r).

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 6



R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 7

The Hohenberg-Kohn Theorems - Proof



The Hohenberg-Kohn Theorems - Continued

• Generalization by Levy and Lieb
– Recast as a two step process

• Consider all many-body wavefunctions Ψ with the same density
• First, minimize for a given density n
• Next, minimize n to find density with lowest energy n0

• What is accomplished by the Hohenberg-Kohn theorems?

• Existence proofs

• A Nobel prize for this???
• The genius is the next step  –

to realize that this provides a new way to 
approach the many-body problem
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The Kohn-Sham Ansatz

• Kohn-Sham (1965) – Replace original many-body problem 
with an independent electron problem – that can be solved!

• The ground state density is required to be the same as the 
exact density 

• Only the ground state density and energy are required to be the 
same as in the original many-body system
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The Kohn-Sham Ansatz II

• From Hohenberg-Kohn the ground state energy is a 
functional of the density E0[n], minimum at n = n0

• From Kohn-Sham 

Exchange-Correlation
Functional – Exact theory
but unknown functional! 

Equations for independent
particles  - soluble

• The new paradigm – find useful, approximate functionals
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The Kohn-Sham Ansatz III

• Approximations to the functional Exc[n]
• Requires information on the many-body system of 

interacting electrons
• Local Density Approximation - LDA

• Assume the functional is the same as a model problem –
the homogeneous electron gas

• Exc has been calculated as a function of density
using quantum Monte Carlo methods (Ceperley & Alder)

• Gradient approximations - GGA
• Various theoretical improvements for electron density 

that is varies in space 
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What is Exc[n] ?

• Exchange and correlation → around each electron, other 
electrons tend to be excluded – “x-c hole”

• Excis the interaction of the electron with the “hole” –
spherical average – attractive – Exc[n] < 0.
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Very non-spherical

Spherical average very close
to the hole in a homogeneous
electron gas!



Exchange-correlation (x-c) hole in silicon

• Calculated by Monte Carlo methods

1

(b)(a)

−0.1

−0.075
−0.05
−0.025

00.95
0.85
0.75
0.65

0.55

−0.1

0.75

1

0.5

Exchange Correlation

Fig. 7.3 - Hood, et. al. [349]

Hole is reasonably well localized near the electron
Supports a local approximation
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Exchange-correlation (x-c) hole in silicon

• Calculated by Monte Carlo methods

Exchange-correlation hole – spherical average
Bond Center Interstitial position Comparison to scale
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relevant regions of space
Supports local density approximation ! Fig. 7.4 - Hood, et. al. [349]
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The Kohn-Sham Equations

• Assuming a form for Exc[n]
• Minimizing energy (with constraints)  → Kohn-Sham Eqs.

Constraint – required
Exclusion principle for
independent particles

Eigenvalues are 
approximation
to the energies to 
add or subtract 
electrons 
–electron bands
More later
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Solving Kohn-Sham 
Equations

• Structure, types of atoms

• Guess for input

• Solve KS Eqs.

• New Density and Potential

• Self-consistent?
• Output:

– Total energy, force, stress, ...
– Eigenvalues



Example of Results – Test Case

• Hydrogen molecules - using the LSDA
(from O. Gunnarsson) 
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Calculations on Materials 
Molecules, Clusters, Solids, ….

• Basic problem - many electrons in the presence of 
the nuclei

• Core states – strongly bound to nuclei – atomic-like
• Valence states – change in the material – determine 

the bonding, electronic and optical properties, 
magnetism, …..
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The Three Basic Methods for 
Modern Electronic Structure Calculations 

• Localized orbitals
– The intuitive appeal of atomic-like states
– Simplest interpretation in tight-binding form
– Gaussian basis widely used in chemistry
– Numerical orbitals used in SIESTA

• Augmented methods
– “Best of both worlds” – also most demanding
– Requires matching inside and outside functions
– Most general form – (L)APW

• Plane waves
– The simplicity of Fourier Expansions
– The speed of Fast Fourier Transforms
– Requires smooth pseudopotentials
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Plane Waves

• Kohn-Sham
Equations 
in a crystal

• The most general approach

• Kohn-Sham
Equations 
in a crystal

• The problem is the atoms! High Fourier components!
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Plane Waves
• (L)APW method

• Augmentation: represent the wave function inside 
each sphere in spherical harmonics
– “Best of both worlds”
– But requires matching inside and outside functions
– Most general form – can approach arbitrarily precision
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Plane Waves
• Pseudopotential Method – replace each potential

solid 2

Pseudopotential atom 1

• Generate Pseudopotential in atom (spherical) – use in solid
• Pseudopotential can be constructed to be weak

– Can be chosen to be smooth
– Solve Kohn-Sham equations in solid directly in Fourier space

1 2
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Charge Density of Si – Experiment
- LAPW calculations with LDA, GGA

• Electron density difference from sum of atoms
– Experimental density from electron scattering
– Calculations with two different functionals

• J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997).

– Very similar results with pseudopotentials
• O. H. Nielsen and R. M. Martin (1995)

Exp LDA GGA
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Comparisons – LAPW – PAW -
- Pseudopotentials (VASP code)

• a – lattice constant;   B – bulk modulus;   m – magnetization

• aHolzwarth , et al.; bKresse & Joubert; cCho & Scheffler; dStizrude, et al.
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Phase Transitions under Pressure
Silicon is a Metal for P > 110 GPa

• Demonstration that pseudopotentials are an accurate 
“ab initio” method for calculations of materials

• Results are close to experiment!
– M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
– R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, Phys. Rev. B 30, 3210 (1982).



The Car-Parrinello Advance

• Car-Parrinello Method – 1985
– Simultaneous solution of Kohn-Sham equations for electrons 

and Newton’s equations for nuclei
– Iterative update of wavefunctions - instead of diagonalization
– FFTs instead of matrix operations – N lnN instead of N2 or N3

– Trace over occupied subspace to get total quantities (energy, 
forces, density, …) instead of eigenfunction calculations

– Feasible due to simplicity of the plane wave pseudopotential
method

• A revolution in the power of the methods
– Relaxation of positions of nuclei to find structures
– Simulations of solids and liquids with nuclei moving thermally
– Reactions, . . . 

• Stimulated further developments - VASP, ABINIT, SIESTA, . . .
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Simulation of Liquid Carbon

• Solid Line: Car-Parrinello plane wave pseudopotential
method (Galli, et al, 1989-90)

• Dashed Line: TB potential of Xu, et al (1992)

2 4 60
0.0

0.5

1.0

1.5

2.0

2.5

r  (a.u.)

R
ad

ia
l d

en
si

ty
 d

is
tri

bu
tio

n 
g(

r)

“snapshot of liquid”

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 27



Example of Thermal Simulation

• Phase diagram of carbon
• Full Density Functional “Car-Parrinello” simulation 
• G. Galli, et al (1989); M. Grumbach, et al.  (1994)
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Nitrogen under pressure – Recent discoveries

W. D. Mattson,   S. Chiesa,
R. M. Martin,  PRL, 2004.  

Squeezed
&

Cooled
•P > 100 Gpa and 0K
•Network solid
•Predicted > 15 years ago (DFT)
•Found experimentally in 2000
•New Prediction of Metallic N

•Hot Molecular Liquid
•58 Gpa 7600 K
•Nitrogen Molecules 
Disassociate and Reform

• Used SIESTA code for MD simulation
• Sample structures tested using ABINIT
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What about eigenvalues?
• The only quantities that are supposed to be correct in the 

Kohn-Sham approach are the density, energy, forces, ….
• These are integrated quantities

– Density  n(r ) = Σi |Ψi(r )|2
– Energy  Etot = Σi εi + F[n] 
– Force FI = - dEtot / dRI where RI = position of nucleus I

• What about the individual Ψi(r ) and εi ?
– In a non-interacting system, εi are the energies to add and subtract 

“Kohn-Sham-ons” – non-interacting “electrons”
– In the real interacting many-electron system, energies to add and 

subtract electrons are well-defined only at the Fermi energy

• The Kohn-Sham Ψi(r ) and εi are approximate functions
- a starting point for meaningful many-body calculations
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Electron Bands

• Understood since the 1920’s - independent electron theories 
predict that electrons form bands of allowed eigenvalues, with
forbidden gaps 
• Established by experimentally for states near the Fermi energy
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Bands and the “Band Gap Problem”
• Excitations are NOT well-predicted by 

the “standard” LDA, GGA forms of DFT
Example of Germanium

Ge is a 
metal 
in LDA!
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The “Band Gap Problem”
• Excitations are NOT well-predicted by 

the “standard” LDA, GGA forms of DFT
The “Band Gap Problem”

Orbital dependent DFT is 
more complicated but 
gives improvements -
treat exchange better, e.g,
“Exact Exchange”

M. Staedele et al, PRL 79, 2089 (1997)

Ge is a 
metal 
in LDA!
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Failures!
• All approximate functionals fail at some point!
• Most difficult cases

– Mott Insulators – often predicted to be metals 
– Metal-insulator Transitions
– Strongly correlated magnetic systems
– Transiton metal oxides 
– Hi-Tc materials 
– . . .
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Conclusions I
• Density functional theory is by far the most widely 

applied  “ab intio” method used in for “real 
materials” in physics, chemistry, materials science

• Approximate forms have proved to be very 
successful

• BUT there are failures
• No one knows a feasible approximation valid for  

all problems – especially for cases with strong 
electron-electron correlations
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Conclusions II
• Exciting arenas for theoretical predictions

– Working together with Experiments
– Realistic simulations under real conditions
– Molecules and clusters in solvents, . . .
– Catalysis in real situations
– Nanoscience and Nanotechnology
– Biological problems

• Beware to understand what you are doing
– Limitations of present DFT functionals
– Care to use codes properly 
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