Density Functional Theory The Basis of Most Modern Calculations

Richard M. Martin – UIUC

Lecture at Summer School Hands-on introduction to Electronic Structure Materials Computation Center University of Illinois – June, 2005

> Hohenberg-Kohn; Kohn-Sham – 1965 Defined a new approach to the many-body interacting electron problem

> > **Reference:**

Electronic Structure: Basic Theory and Practical Methods, Richard M. Martin (Cambridge University Press, 2004)

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

1

The Fundamental Hamiltonian

Interacting electrons in an external potential

$$\hat{H} = -\sum_{i} \frac{\hbar^{2}}{2m_{e}} \nabla_{i}^{2} + \sum_{i,I} \frac{Z_{I}e^{2}}{|\mathbf{r}_{i} - \mathbf{R}_{I}|} + \frac{1}{2} \sum_{i \neq j} \frac{e^{2}}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
$$-\sum_{I} \frac{\hbar^{2}}{2M_{I}} \nabla_{I}^{2} + \frac{1}{2} \sum_{I \neq J} \frac{Z_{I}Z_{J}e^{2}}{|\mathbf{R}_{I} - \mathbf{R}_{J}|}$$

- $\bullet\,$ Only one small term: The kinetic energy of the nuclei
- If we omit this term, the nuclei are a fixed external potential acting on the electrons
- The final term is essential for charge neutrality but is a classical term that is added to the electronic part

Many-Body Electron Problem

The many-electron wavefunction is a function in 3N dimensional space

$$\Psi = \Psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_N) \tag{2}$$

The total energy is the expectation value

$$E = \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \equiv \langle \hat{H} \rangle = \langle \hat{T} \rangle + \langle \hat{V}_{int} \rangle + \int d^3 r V_{ext}(\mathbf{r}) n(\mathbf{r}).$$
(3)

The ground state wavefunction Ψ_0 is the state with lowest energy that obeys the symmetries of the particles and conservation laws.

$$E_0 = min \frac{\langle \Psi | \hat{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} \tag{4}$$

The basis of most modern calculations Density Functional Theory (DFT)

• Hohenberg-Kohn (1964)

$$V_{ext}(\mathbf{r}) \bigoplus_{\substack{\Downarrow \\ \Downarrow \\ \Psi_i(\{\mathbf{r}\}) \\ \Rightarrow \\ \Psi_0(\{\mathbf{r}\})}} n_0(\mathbf{r})$$

- All properties of the many-body system are determined by the ground state density $n_0(r)$
- Each property is a functional of the ground state density $n_0(r)$ which is written as $f[n_0]$
- A functional $f[n_0]$ maps a function to a result: $n_0(r) \rightarrow f$

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

The Hohenberg-Kohn Theorems

• Theorem I: For any system of electrons in an external potential $V_{ext}(\mathbf{r})$, that potential is determined uniquely, except for a constant, by the ground state density $n(\mathbf{r})$.

Corollary I: Since the hamiltonian is thus fully determined, except for a constant shift of the energy, the full many-body wavefunction and all other properties of the system are also completely determined!

 $n_0(r) \rightarrow V_{ext}(r)$ (except for constant)

5

The Hohenberg-Kohn Theorems

 Theorem II: A <u>universal functional</u> for the energy E[n] of the density n(r) can be defined for all electron systems. The exact ground state energy is the global minimum for a given V_{ext}(r), and the density n(r) which minimizes this functional is the exact ground state density.

Corollary II: The functional E[n] alone is sufficient to determine the exact ground state energy and density. Excited states of the electrons must be determined by other means.

Minimizing E[n] for a given $V_{ext}(r) \rightarrow n_0(r)$ and E In principle, one can find all other properties and they are functionals of $n_0(r)$.

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

The Hohenberg-Kohn Theorems - Proof

Proof of Theorem I:

Suppose that there were two different external potentials $V_{ext}^{(1)}(\mathbf{r})$ and $V_{ext}^{(2)}(\mathbf{r})$ with the same ground state density $n(\mathbf{r})$. The two external potentials lead to two different hamiltonians, $\hat{H}^{(1)}$ and $\hat{H}^{(2)}$, which have different ground state wavefunctions, $\Psi^{(1)}$ and $\Psi^{(2)}$, which are hypothesized to have the same density $n(\mathbf{r})$. Then:

$$E^{(1)} = \langle \Psi^{(1)} | \hat{H}^{(1)} | \Psi^{(1)} \rangle < \langle \Psi^{(2)} | \hat{H}^{(1)} | \Psi^{(2)} \rangle.$$
 (6)

which leads to

$$E^{(1)} < E^{(2)} + \int d^3r \{ V_{ext}^{(1)}(\mathbf{r}) - V_{ext}^{(2)}(\mathbf{r}) \} n(\mathbf{r}).$$
(7)

But changing the labels leads to

$$E^{(2)} < E^{(1)} + \int d^3r \{ V_{ext}^{(2)}(\mathbf{r}) - V_{ext}^{(1)}(\mathbf{r}) \} n(\mathbf{r}).$$
(8)

which is a contradiction!

The Hohenberg-Kohn Theorems - Continued

- Generalization by Levy and Lieb
 - Recast as a two step process
 - Consider all many-body wavefunctions Ψ with the same density
 - First, minimize for a given density **n**
 - Next, minimize **n** to find density with lowest energy \mathbf{n}_0
- What is accomplished by the Hohenberg-Kohn theorems?
- Existence proofs
- A Nobel prize for this???
- The genius is the next step to realize that this provides a new way to approach the many-body problem

8

The Kohn-Sham Ansatz

- Kohn-Sham (1965) Replace original many-body problem with an independent electron problem that can be solved!
- The ground state density is required to be the same as the exact density

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

$$V_{ext}(\mathbf{r}) \stackrel{HK}{\leftarrow} n_0(\mathbf{r}) \stackrel{KS}{\leftrightarrow} n_0(\mathbf{r}) \stackrel{HK_0}{\Rightarrow} V_{KS}(\mathbf{r})$$

$$\psi_i({\mathbf{r}}) \Rightarrow \Psi_0({\mathbf{r}}) \stackrel{HK}{\leftrightarrow} \psi_{i=1,N_e}(\mathbf{r}) \leftarrow \psi_i(\mathbf{r})$$

• Only the ground state density and energy are required to be the same as in the original many-body system

9

The Kohn-Sham Ansatz II

- From Hohenberg-Kohn the ground state energy is a functional of the density $E_0[n]$, minimum at $n = n_0$
- From Kohn-Sham

$$n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1} |\psi_i^{\sigma}(\mathbf{r})|^2,$$

• The new paradigm – find useful, approximate functionals

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 10

The Kohn-Sham Ansatz III

- Approximations to the functional E_{xc}[n]
- Requires information on the many-body system of interacting electrons
- Local Density Approximation LDA
 - Assume the functional is the same as a model problem the homogeneous electron gas
 - E_{xc} has been calculated as a function of density using quantum Monte Carlo methods (Ceperley & Alder)
- Gradient approximations GGA
 - Various theoretical improvements for electron density that is varies in space

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 11

What is E_{xc}[n] ?

- Exchange and correlation → around each electron, other electrons tend to be excluded "x-c hole"
- E_{xc} is the interaction of the electron with the "hole" spherical average attractive $E_{xc}[n] < 0$.

```
Exchange hole in Ne atom
Fig. 7.2 Gunnarsson, et. al. [348]
```

Very non-spherical

Spherical average very close to the hole in a homogeneous electron gas!

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

Exchange-correlation (x-c) hole in silicon

Calculated by Monte Carlo methods

Hole is reasonably well localized near the electron Supports a local approximation

Fig. 7.3 - Hood, et. al. [349]

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 13

Exchange-correlation (x-c) hole in silicon

- Calculated by Monte Carlo methods
- Exchange-correlation hole spherical average

x-c hole close to that in the homogeneous gas in the most relevant regions of space Supports local density approximation ! Fig. 7.4 - Hood, et. al. [349]

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

The Kohn-Sham Equations

- Assuming a form for $E_{xc}[n]$
- Minimizing energy (with constraints) \rightarrow Kohn-Sham Eqs. $n_0(\mathbf{r}) = \sum_{\sigma} \sum_{i=1}^{\sigma} |\psi_i^{\sigma}(\mathbf{r})|^2$,

$$E_{KS} = \frac{1}{2} \sum_{\sigma} \sum_{i=1} |\nabla \psi_i^{\sigma}|^2 + \int d\mathbf{r} V_{ext}(\mathbf{r}) n(\mathbf{r}) + E_{Hartree}[n] + E_{II} + E_{xc}[n].$$

$$\delta E_{KS} = 0$$
Eigenvalues are

Constraint – required Exclusion principle for independent particles $\frac{\delta E_{KS}}{\delta \psi_i^{\sigma*}(\mathbf{r})} = 0,$

$$\langle \psi_i^{\sigma} | \psi_j^{\sigma'} \rangle = \delta_{i,j} \delta_{\sigma,\sigma'}.$$

$$\left(-\frac{1}{2}\nabla^2 + V_{KS}^{\sigma}(\mathbf{r}), -\varepsilon_i^{\sigma}\right)\psi_i^{\sigma}(\mathbf{r}) = 0 \qquad (3)$$

approximation to the energies to add or subtract electrons –electron bands More later

$$V_{KS}^{\sigma}(\mathbf{r}) = V_{ext}(\mathbf{r}) + \frac{\delta E_{Hartree}}{\delta n(\mathbf{r},\sigma)} + \frac{\delta E_{xc}}{\delta n(\mathbf{r},\sigma)}$$
$$= V_{ext}(\mathbf{r}) + V_{Hartree}(\mathbf{r}) + \frac{V_{xc}^{\sigma}(\mathbf{r})}{V_{xc}(\mathbf{r})}(4)$$

(1)

(2)

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 15

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

Example of Results – Test Case

• Hydrogen molecules - using the LSDA

(from O. Gunnarsson) 6 Exact H_2 LSD HF 4 E(H₂)-2E(H) (eV) ЗΣ 2 $1\Sigma_{g}^{+}$ 0 -2 -4 2 R/a 0.5 1 1.5 2.5 3 3.5 0 4

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 17

Calculations on Materials Molecules, Clusters, Solids,

• Basic problem - many electrons in the presence of the nuclei

- Core states strongly bound to nuclei atomic-like
- Valence states change in the material determine the bonding, electronic and optical properties, magnetism,

The Three Basic Methods for Modern Electronic Structure Calculations

• Plane waves

- The simplicity of Fourier Expansions
- The speed of Fast Fourier Transforms
- Requires smooth pseudopotentials

Localized orbitals

- The intuitive appeal of atomic-like states
- Simplest interpretation in tight-binding form
- Gaussian basis widely used in chemistry
- Numerical orbitals used in SIESTA

Augmented methods

- "Best of both worlds" also most demanding
- Requires matching inside and outside functions
- Most general form (L)APW

Plane Waves

The most general approach

• Kohn-Sham Equations in a crystal

$$\sum_{m'} H_{m,m'}(\mathbf{k}) c_{i,m'}(\mathbf{k}) = \varepsilon_i(\mathbf{k}) c_{i,m}(\mathbf{k})$$
(2)

$$H_{m,m'}(\mathbf{k}) = \frac{\hbar^2}{2m_e} |\mathbf{k} + \mathbf{G}_m|^2 \delta_{m,m'} + V_{eff}(\mathbf{G}_m - \mathbf{G}_{m'}).$$
(3)

• The problem is the atoms! High Fourier components!

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 20

Plane Waves

• (L)APW method

- Augmentation: represent the wave function inside each sphere in spherical harmonics
 - "Best of both worlds"
 - But requires matching inside and outside functions
 - Most general form can approach arbitrarily precision

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

Plane Waves

• Pseudopotential Method – replace each potential

- 1 Generate Pseudopotential in atom (spherical) 2 use in solid
- Pseudopotential can be constructed to be weak
 - Can be chosen to be smooth
 - Solve Kohn-Sham equations in solid directly in Fourier space

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 22

Charge Density of Si – Experiment - LAPW calculations with LDA, GGA

- Electron density <u>difference</u> from sum of atoms
 - Experimental density from electron scattering
 - Calculations with two different functionals
 - J. M. Zuo, P. Blaha, and K. Schwarz, J. Phys. Cond. Mat. 9, 7541 (1997).
 - Very similar results with pseudopotentials
 - O. H. Nielsen and R. M. Martin (1995)

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

23

Comparisons – LAPW – PAW – - Pseudopotentials (VASP code)

Method	С		Si		CaF ₂		bcc Fe		
	a	B	a	B	a	B	a	B	m $$
NCPP ^a	3.54	460	5.39	98	5.21	90	2.75 ^{<i>c</i>}	226 ^{<i>c</i>}	
PAW^a	3.54	460	5.38	98	5.34	100			
PAW^b	3.54	460	5.40	95	5.34	101	2.75	247	2.00
$USPP^b$	3.54	461	5.40	95	5.34	101	2.72	237	2.08
$LAPW^{a}$	3.54	470	5.41	98	5.33	110	2.72^{d}	245^{d}	2.04^d
EXP^a	3.56	443	5.43	99	5.45	85-90	2.87^{d}	172^{d}	2.12^{d}

- a lattice constant; B bulk modulus; m magnetization
- ^aHolzwarth, *et al.*; ^bKresse & Joubert; ^cCho & Scheffler; ^dStizrude, *et al.*

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 24

Phase Transitions under Pressure Silicon is a Metal for P > 110 GPa

- Demonstration that pseudopotentials are an accurate "ab initio" method for calculations of materials
- Results are close to experiment!
 - M. T. Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982).
 - R. Biswas, R. M. Martin, R. J. Needs and O. H. Nielsen, Phys. Rev. B 30, 3210 (1982).
 R. Martin Hands-on Introduction to Electronic Structure DFT 6/2005 25

The Car-Parrinello Advance

- Car-Parrinello Method 1985
 - Simultaneous solution of Kohn-Sham equations for electrons and Newton's equations for nuclei
 - Iterative update of wavefunctions instead of diagonalization
 - FFTs instead of matrix operations N lnN instead of N^2 or N^3
 - Trace over occupied subspace to get total quantities (energy, forces, density, ...) instead of eigenfunction calculations
 - Feasible due to simplicity of the plane wave pseudopotential method
- A revolution in the power of the methods
 - Relaxation of positions of nuclei to find structures
 - Simulations of solids and liquids with nuclei moving thermally
 - Reactions, . . .
- Stimulated further developments VASP, ABINIT, SIESTA, ...

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 26

Simulation of Liquid Carbon

- Solid Line: Car-Parrinello plane wave pseudopotential method (Galli, et al, 1989-90)
- Dashed Line: TB potential of Xu, et al (1992)

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 27

Example of Thermal Simulation

- Phase diagram of carbon
- Full Density Functional "Car-Parrinello" simulation
- G. Galli, et al (1989); M. Grumbach, et al. (1994)

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005

28

Nitrogen under pressure – Recent discoveries

- Used SIESTA code for MD simulation
- Sample structures tested using ABINIT

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 29

What about eigenvalues?

- The only quantities that are supposed to be correct in the Kohn-Sham approach are the density, energy, forces,
- These are integrated quantities
 - Density $n(r) = \sum_i |\Psi_i(r)|^2$
 - Energy $E_{tot} = \Sigma_i \epsilon_i + F[n]$
 - Force $F_I = -dE_{tot} / dR_I$ where $R_I = position$ of nucleus I
- What about the individual $\Psi_i(r$) and ϵ_i ?
 - In a non-interacting system, ε_i are the energies to add and subtract "Kohn-Sham-ons" non-interacting "electrons"
 - In the real interacting many-electron system, energies to add and subtract electrons are well-defined only at the Fermi energy
- The Kohn-Sham $\Psi_i(r)$ and ε_i are approximate functions - a starting point for meaningful many-body calculations

Electron Bands

- Understood since the 1920's independent electron theories predict that electrons form bands of allowed eigenvalues, with forbidden gaps
- Established by experimentally for states near the Fermi energy

Bands and the "Band Gap Problem"

• Excitations are NOT well-predicted by the "standard" LDA, GGA forms of DFT

Example of Germanium

R. Martin - Hands-on Introduction to Electronic Structure - DFT - 6/2005 32

The "Band Gap Problem"

• Excitations are NOT well-predicted by the "standard" LDA, GGA forms of DFT

The "Band Gap Problem"

Orbital dependent DFT is more complicated but gives improvements treat exchange better, e.g, "Exact Exchange"

M. Staedele et al, PRL 79, 2089 (1997)

Failures!

- All approximate functionals fail at some point!
- Most difficult cases
 - Mott Insulators often predicted to be metals
 - Metal-insulator Transitions
 - Strongly correlated magnetic systems
 - Transiton metal oxides
 - Hi-Tc materials
 - • •

Conclusions I

- Density functional theory is by far the most widely applied *"ab intio"* method used in for "real materials" in physics, chemistry, materials science
- Approximate forms have proved to be very successful
- **BUT there are failures**
- No one knows a feasible approximation valid for all problems – especially for cases with strong electron-electron correlations

Conclusions II

- Exciting arenas for theoretical predictions
 - Working together with Experiments
 - Realistic simulations under real conditions
 - Molecules and clusters in solvents, . . .
 - Catalysis in real situations
 - Nanoscience and Nanotechnology
 - Biological problems

• Beware to understand what you are doing

- Limitations of present DFT functionals
- Care to use codes properly