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Projector Monte Carlo 
• Originally suggested by Fermi and implemented in 1950 by 
Donsker and Kac for H atom. 

• Practical methods and application developed by Kalos: 

Ceperley  Projector Monte Carlo 

Problems with Variational MC 
•  Powerful method since you 

can use any trial function 
•  Scaling (computational 

effort vs. size) is almost 
classical 

•  Learn directly about what 
works in wavefunctions 

•  No sign problem 

•  Optimization is time consuming 
•  Energy is insensitive to order 

parameter 
•  Non-energetic properties are 

less accurate. O(1) vs. O(2) for 
energy. 

•  Difficult to find out how 
accurate results are. 

•  Favors simple states over more 
complicated states, e.g. 
–  Solid over liquid 
–  Polarized over unpolarized 

What goes into the trial wave function comes out! “GIGO” 

We need a more automatic method! Projector Monte Carlo 
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Projector Monte Carlo 
(variants: Green’s function MC, Diffusion MC, Reptation MC) 

•  Project single state using the Hamiltonian 
 
•  We show that this is a diffusion + branching operator.  

Maybe we can interpret as a probability. But is this a 
probability? 

•  Yes! for bosons since ground state can be made real 
and non-negative.  

•  But all excited states must have sign changes. This is 
the “sign problem.” 

•  For efficiency we do “importance sampling.” 
•  Avoid sign problem with the fixed-node method. 
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Diffusion Monte Carlo 

•  How do we analyze 
this operator?  

•  Expand into exact 
eigenstates of H. 

•  Then the evolution is 
simple in this basis. 

•  Long time limit is 
lowest energy state 
that overlaps with the 
initial state, usually 
the ground state. 

•  How to carry out on 
the computer? 
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The Green’s function 
•  Operator notation 

•  We define the coordinate green’s function (or density 
matrix by: 

Roughly the probability density of going from R0 to R in 
“time” t.  (but is it a probability?) 

•  Properties: 
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Monte Carlo process 
•  Now consider the variable “t” as a 

continuous time (it is really 
imaginary time). 

•  Take derivative with respect to time 
to get evolution. 

•  This is a diffusion + branching 
process. 

•  Justify in terms of Trotter’s 
theorem. 

Requires interpretation of the 
wavefunction as a probability 
density. 

 
But is it?  Only in the boson ground 

state. Otherwise there are nodes. 
Come back to later. 
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Trotter’s formula 
•  How do we find the solution of: 

•  The operator solution is: 

•  Trotter’s formula (1959): 

•  Assumes that A,B and A+B are reasonable operators. 

•  This means we just have to figure out what each operator 
does independently and then alternate their effect.  This is 
rigorous in the limit as nè∞. 

•  In the DMC case A is diffusion operator, B is a branching 
operator. 

•  Just like “molecular dynamics” At small time we evaluate each 
operator separately. 
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Putting this together 

 
•  n is number of time slices. 
•    is the “time-step” 

•  V is “diagonal” 

•  Error at finite n comes from commutator is roughly: 

•  Diffusion preserves normalization but potential does not! 
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Basic DMC algorithm 
•  Construct an ensemble (population P(0)) sampled from 

the trial wavefunction. {R1,R2,…,RP} 
•  Go through ensemble and diffuse each one (timestep τ) 

•  number of copies= 
•  Trial energy ET adjusted to keep population fixed. 

 

•  Problems: 
–  Branching is uncontrolled 
–  Population unstable 
–  What do we do about fermi statistics? 
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Sampling the normal distribution 
•  Inverse mapping is a little slow, also of infinite range. 
•  Trick: generate 2 at a time: r=(x,y) 

•  Or sample angle using rejection technique: 
–  Sample (x,y) in square 
–  Accept if x2+y2 <1 
–  Normalize to get the correct r. 
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Population Bias 
•  Having the right trial energy guarantees that population 

will on the average be stable, but fluctuations will 
always cause the population to either grow too large or 
too small.  

•  Various ways to control the population 
•  Suppose P0 is the desired population and P(t) is the 

current population.  How much do we have to adjust ET 
to make P(t+T)=P0? 

 
•  Feedback procedure: 
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•  There will be a (small) bias in the energy caused by a 
limited population. 
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Importance Sampling 
Kalos 1970, Ceperley 1979 

•  Why should we sample the wavefunction? The physically 
correct pdf is |Φ|2. 

•  Importance sample (multiply) by trial wave function. 

 
Evolution = diffusion    + drift         +         branching 
•  Use accept/reject step for more accurate evolution. 
     make acceptance ratio>99% . Determines time step. 
•  We have three terms in the evolution equation. 

Trotter’s theorem still applies. 
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Green’s function for a gradient 
What is Green’s function for the operator? 
 
 
 
 
 
 
 
This operator just causes probability distribution to drift in 

the direction of F. 
Smoluchowski equation for Brownian motion it was the 

effect of gravitational field on the motion of colloids. 
In practice, we limit the gradient so the walk is not pushed 

too far. 

variables separate to 1D problems
Evolution equation for Green's function:
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•  To the pure diffusion algorithm we have added a drift step 
that pushes the random walk in directions of increasing trial 
function: 

•  Branching is now controlled by the local energy 

•  Because of zero variance principle, fluctuations are controlled. 
•  Cusp condition can limit infinities coming from singular 

potentials. 
•  We still determine ET by keeping asymptotic population stable. 

•  Must have accurate “time” evolution.  Adding accept/reject 
step is a major improvement. 
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•  Importanced sampled Green’s function: 

•  Exact property of DMC Green’s function 

•  We enforce detailed balance to decrease time step 
errors. 

•  VMC satisfies detailed balance. 
•  Typically we choose time step to have 99% acceptance 

ratio. 
•  Method gives exact result if either time step is zero or 

trial function is exact. 
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Schematic of DMC 
Ensemble evolves 

according to 
 
•  Diffusion 
•  Drift 
•  branching 

  ensemble 
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Mixed estimators 
•  Problem is that PMC 

samples the wrong 
distribution. 

•  OK for the energy 
•  Linear extrapolation 

helps correct this 
systematic error 

•  Other solutions: 
–  Maximum overlap 
–  Forward walking 
–  Reptation/path 

integrals 
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Forward Walking 
Kalos et al. 1974. 

•  Let’s calculate the average population resulting from DMC 
starting from a single point R0 after a time `t’. 

•  We can estimate the correction to the mixed estimator by 
weighting with the number of descendants of a given 
configuration. 

•  Problem: the fluctuations in the weights eventually diverge. 
Don’t make ‘t’ too large. 
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Fusion sticking coefficient 
Phys. Rev. A 31, 1999 (1985). 

 •  Consider the  3 body system (µ d t) 
•  For the sticking coefficient, we need the exact 

wavefunction at the point where 2 nuclei are at the 
same position. (this is a singular point) 

( )1 2 3,r r rψ =
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Other projector functions can be used 
 

•  Common effect on long-time (iteration) limit. 
•  3rd  choice generates a Krylov sequence. Only works for 

bounded spectra such as a lattice model. 
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Green’s Function Monte Carlo 
Kalos, Levesque, Verlet Phys. Rev. A9, 2178 (1974). 

•  It is possible to make a  zero time-step-error method 
•  Works with the integral formulation of DMC 

•  Sample time-step from Poisson distribution 
•  Express operator in a series expansion and sample the 

terms stochastically. 

•  Recent revival: “Continuous time Monte Carlo” for 
lattice models and DMFT solver. 
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