Projector Monte Carlo

*Originally suggested by Fermi and implemented in 1950 by
Donsker and Kac for H atom.

*Practical methods and application developed by Kalos:
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Various th and 1 p relating to heliumlike systems in thelr ground
states are treated, New developments in the numerical solution of the Schradinger equation
permit the solution of 256-body systems with hard-sphere forces. Using periodic boundary
conditions, fluid and crystal states can be described; results for the energy and radial-dis-
tribution functions are given. A new method of correcting for low-lying phonon excitations
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Problems with Variational MC

e Powerful method since you
can use any trial function

Optimization is time consuming
Energy is insensitive to order

e Scaling (computational parameter
effori; vs. size) is almost e Non-energetic properties are
classical less accurate. O(1) vs. O(2) for
e Learn directly about what energy.
works in wavefunctions ¢ Difficult to find out how

accurate results are.

e Favors simple states over more
complicated states, e.g.

- Solid over liquid
- Polarized over unpolarized

¢ No sign problem

What goes into the trial wave function comes out! “GIGO”

We need a more automatic method! Projector Monte Carlo
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Projector Monte Carlo
(variants: Green’s function MC, Diffusion MC, Reptation MC)

e Project single state using the Hamiltonian

#(1)=e " 9(0)

e We show that this is a diffusion + branching operator.
Maybe we can interpret as a probability. But is this a
probability?

e Yes! for bosons since ground state can be made real
and non-negative.

e But all excited states must have sign changes. This is
the “sign problem.”

e For efficiency we do “importance sampling.”

e Avoid sign problem with the fixed-node method.
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Diffusion Monte Carlo
How do we analyze
this operator?  —— W(R,t)=e " 'w(R,0)
_— H¢a = Ea¢a

Expand into exact

eigenstates of H. w(R,0)= 2¢a (R)<¢a |l//(())>

Then the evolution is : E—E

simple in this basis. W(R,t)= Zgba(R)e_’( «Fr) <¢a |‘//(0)>
e ot Im_ W(RD) = g (R)e 7 (g, [p(0))

that overlaps with the
initial state, usually
the ground state.
How to carry out on
the computer?

E, = E, = normalization fixed

Ceperley Projector Monte Carlo




The Green’s function

e Operator notation db R
P __fp
dt
,b — e—Ht
e We define the coordinate green’s function (or density

matrix by:
G(R — R51)=(R|e”"

7)
Roughly the probability density of going from R, to R in
“time” t. (but is it a probability?)
_BG(RO — R;t)
ot
e Properties: G(R %R'O):§(R —R)

G(R, > R;t) Zgb (R,)¢, (R
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= HG(R'— R;1)

Monte Carlo process

¢ Now consider the variable “t” as a
continuous time (it is really
imaginary time).

e Take derivative with respect to time _al//(R,t) — (H—E )W(R t)
to get evolution. ot r ’

e This is a diffusion + branching x
process. _ 2

e Justify in terms of Trotter’s H= Z 'm Vi+V(R)
theorem. ! i

oW (R, ¢ h?
Requires interpretation of the —L) = —Z VZI//(R t)
wavefunction as a probability ot T 2m,
density.
W (R,1)
- | -V V(R - Ep (Rt
But is it? Only in the boson ground ot
state. Otherwise there are nodes.
Come back to later.
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Trotter’ s formula

dp .
——=(A+B
o~ ATBp

e How do we find the solution of:

e The operator solution is:

,5 — e(A+B)t
e Trotter’ s formula (1959):

p=1lim

t t n
[
e Assumes that A,B and A+B are reasonable operators.

<R0 [eﬁ;‘eﬁ’ﬂ R,,>=<R0 R'1><R'le3 1>....<RH R'"><R'n o R">

e This means we just have to figure out what each operator
does independently and then alternate their effect. This is
rigorous in the limit as n=» oo,

e In the DMC case A is diffusion operator, B is a branching
operator.

e Just like “molecular dynamics” At small time we evaluate each
operator separately.

L4
e’

14
e’
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Putting this together

)

T
Hw[ e |

p =
e nis number of time slices.
e [¥] is the “time-step”

o
)

2
e Vis “diagonal” <r e - 477:17:)_3/2 e—(F—F') o
<r e =6(r—rYe 7"
(Re™™R,)~ <R0‘e"T R1> (k) ..<Rn_1 e-”‘Rn>e*’”Rn>
s oa
e Error at finite n comes from commutator is roughly: _7[T’VJ

e
« Diffusion preserves normalization but potential does not!
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Basic DMC algorithm

e Construct an ensemble (population P(0)) sampled from

the trial wavefunction. {R;,R, ,Rp}

e Go through ensemble and diffuse each one (timestep 1)

R'k :Rk +\/21T§(l‘)'_ ndrn
———upm

—2(V (R)-Ey) floor function
e number of copies= € "tU
e Trial energy E; adjusted to keep population fixed.
) dRH@(R,1)
E,= J— ~(r(),.,
[aro(R.1)
e Problems:

- Branching is uncontrolled
— Population unstable
- What do we do about fermi statistics?
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Sampling the normal distribution

e Inverse mapping is a little slow, also of infinite range.
e Trick: generate 2 at a time: r=(Xx,y)

2
p(x, y)dxdy = (27) " exp(~ %) = p(r)rdrd

p(v)dv = %e_”z with v =7’

x =+/-21In(u,) cos(27u,)

y=+/—2In(y,) sin(27u,)
e Or sample angle using rejection technique:
- Sample (x,y) in square
- Accept if x2+y2 <1
- Normalize to get the correct r.
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Population Bias

e Having the right trial energy guarantees that population
will on the average be stable, but fluctuations will
always cause the population to either grow too large or
too small.

e Various ways to control the population

e Suppose P, is the desired population and P(t) is the
current population. How much do we have to adjust E;
to make P(t+T)=P,? ~T(-8E; _

(t+T)=Po?  p47)=c "5 p(r)=P

_In(P(1)/B)

SE, =

Feedback procedure: E, =E, + K‘ln(P/E))‘

e There will be a (small) bias in the energy caused by a
limited population.
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Importance Sampling

Kalos 1970, Ceperley 1979
e Why should we sample the wavefunction? The physically
correct pdf is |®]2.
e Importance sample (multiply) by trial wave function.

SR =y (DP(R,1)  lim,__ f(R,1) =y (R)@,(R)

_ Bf_(alf,t) =y, (R)H[f(R,t)/l//T (R)] Commute ¥ through H

_af(a]:at) :_/1V2f_gv(szIny/T(R))+(l//T_1H'//r)f(RJ)

Evolution = diffusion + drift + branching
e Use accept/reject step for more accurate evolution.
make acceptance ratio>99% . Determines time step.

e We have three terms in the evolution equation.
Trotter’ s theorem still applies.
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Green’s function for a gradient

What is Green’s function for the operator?

FV

variables separate to 1D problems

Evolution equation for Green's function:

oG (x,t) __F 0G(x,1)
ot ox

solution G(x,t)=h(x—Ft)

This operator just causes probability distribution to drift in
the direction of F.

Smoluchowski equation for Brownian motion it was the
effect of gravitational field on the motion of colloids.

In practice, we limit the gradient so the walk is not pushed
too far.
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e To the pure diffusion algorithm we have added a drift step
that pushes the random walk in directions of increasing trial

function: R'=R+2A1VIny,(R)
e Branching is now controlled by the local energy

E,(R)-E, =y (R Hy(R)- E,

e Because of zero variance principle, fluctuations are controlled.
e Cusp condition can limit infinities coming from singular

potentials.
e We still determine E; by keeping asymptotic population stable.
: dRO(R,t)Hy(R)
E, =lim, _ J ~(E,(R))
Ide(R’t) £(=)

e Must have accurate “time” evolution. Adding accept/reject
step is a major improvement.
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Importanced sampled Green’s function:
Rl

G(R— R") = Mwe-”’ RY)
v(R)

Exact property of DMC Green’s function

¥ (R)[ G(R—R")=|¥(R)] G(R'—R)
We enforce detailed balance to decrease time step

errors. .
G(s'—> s)|l//(s ‘)|
G(s = )

VMC satisfies detailed balance.

Typically we choose time step to have 99% acceptance
ratio.

Method gives exact result if either time step is zero or
trial function is exact.

A(s —s')=min|1
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Ensemble evolves ol ree"and thei

Schematic of DMC

Possible new
Generstion  configurations

New
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DIFFUSION MONTE CARLO CODE

Initialize the ensemble

call initstate(s_old) — of states

psi_old = psi(s_old) Evaluate psi_trial
d ad = drift (Sio|d) Evaluate grad psi_trial
LBOP { - Loop over steps
LOOP { Loop over walkers
I I d T d old.1 Sample new state from
call sample (s_old,s_new,T_new.,d_old,1) drifted Gaussian
psi_new = psi (s_new) Evaluate psi_trial
if (psi_new * psi_old < 0) { Check node crossing
weight =0 < Kill walker if it crosses
} else { a node of psi_trial
d_old = drift (s_old) Evaluate grad psi_trial

call sample(s_new,s_old,T_old,d_new,0) find f/‘{l/iéirit)[/l ;3;“0{). y
A = (p_new/T_new)/(p_old/T_old) < Jor going backware

if(A>rand ()) { Acceptance prob.
s old=s new
P O|d=p new -« Accept the move

naccept = naccept +1} }

weight *= exp(- tau * local_enetgy (s_old) )} Update weight
call reweight (s_old) Reweight ensemble
call averages(s old) <€—

T Collect statistics
Cepeiioy 1 1ujouion iomeCariv -

Mixed estimators

e Problem is that PMC j dRy" (R)A$(R)
A =

samples the wrong < >M N P —
distribution. -[dRW (R)P(R)
* OK for the energy (d) = Jdre (R)49(R)

e Linear extrapolation o _[dep*(R)q)(R)
helps correct this .
systematic error (4) = JdR'// (R)Ay (R)

v [ary (R (R)

(), =2(4),~(4), +0ffo-v]]
e Other solutions: <A>;
- Maximum overlap <A>°: <A>,
- Forward walking

— Reptation/path
integrals

+ 0((¢ - t//)z) for the density

<A>M = <A>V = .[dR((;) - l//)2 minimized wrt A
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Forward Walking

Kalos et al. 1974.
e Let’s calculate the average population resulting from DMC

starting from a single point R, after a time "t’.
P(Ry:t)=[dR (( <R‘ ) R0>

expand the densr[y matrix in terms of exact eigenstates

P(Ry;t) de 2¢ @, (R, )e ")

—oo

lim, . P(Ry:t)= ’Zj(R)W%)

o We can estimate the correction to the mixed estimator by
weighting with the number of descendants of a given
configuration.

(4), = limHmiZP(Ri;t)A(Ri)

e Problem: the fluctuations in the weights eventually diverge.
Don’t make ‘t’ too large.
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Fusion sticking coefficient
Phys. Rev. A 31, 1999 (1985).

e Consider the 3 body system (u d t)

e For the sticking coefficient, we need the exact
wavefunction at the point where 2 nuclei are at the
same position. (this is a singular point)

v(n=r,n)
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FIG. 1. The growth of the population vs the number of Monte Carlo generations using the population estimator (O) and the local
nergy estimator (@) at the triplet coalescence point (all three particles starting at the origin). The ©'s are shifted one-half gencration

energ,
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Other projector functions can be used

—-7(E-Ey)

€ Diffusion MC
G(E)= |:1 +7(E-E; ):I_1 Green's Function MC G

I:l—T(E—ET):I Power MC
G(E;) =1= ground state remains after many iterations

G .
7T =——— =time step
dE|,

for all 3 cases: lim, , G(E)" = o "T(EEr)

e Common effect on long-time (iteration) limit.

e 3 choice generates a Krylov sequence. Only works for
bounded spectra such as a lattice model.

Ceperley Projector Monte Carlo

Green’ s Function Monte Carlo
Kalos, Levesque, Verlet Phys. Rev. A9, 2178 (1974).

e It is possible to make a zero time-step-error method
e Works with the integral formulation of DMC

G(R,R)= <R‘[1+T(H ~E)] | R'> _ T@e”[?”@]

e Sample time-step from Poisson distribution

e Express operator in a series expansion and sample the
terms stochastically.

G(R,R)=H(R,R")+ de" G(R,R"K(R",R"

e Recent revival: “Continuous time Monte Carlo” for
lattice models and DMFT solver.
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