Adsorption of organic molecules on the Si (001) surface

Karen Johnston, $^{1,\,2}$ Andris Gulans, 2 Jesper Kleis, 3 Tuukka Verho, 2

Martti J. Puska,² Bengt I. Lundqvist,^{3,4} and Risto M. Nieminen²

¹Max-Planck Institute for Polymer Research, Mainz, Germany

²Laboratory of Physics, Helsinki University of Technology, Helsinki, Finland ³Center for Atomic-scale Materials Design, Technical University of Denmark, Lyngby, Denmark

⁴Department of Applied Physics, Chalmers University of Technology, Gothenburg, Sweden

We present density functional theory (DFT) calculations of benzene and phenol adsorbed on Si(001)-(2×1). A variety of exchange and correlation (xc) functionals were tested and the choice of xc functional was found to have a significant influence on adsorption energy. Benzene is known to adsorb non-dissociatively and conventional xc functionals predict that benzene adsorbs on top of two silicon dimers in a "tight-bridge" configuration. By using the vdW-DF functional ¹, which accounts for the effect of van der Waals forces, it was found that the "butterfly" structure, which is adsorbed on a single dimer, is stable ². Unlike benzene, phenol adsorbs dissociatively on silicon and, based on core level shift data, experimentalists concluded that phenol is bonded to silicon via the oxygen atom ³. Adsorption energies and core level shifts of several trial adsorption structures, calculated using DFT, show that more than one adsorption structure could fit the experimental data.

- [1] Dion *et al*, Phys. Rev. Lett. **95**, 109902 (2005)
- [2] Johnston et al, Phys. Rev. B 77, 121404R (2008); Phys. Rev. B 77 Erratum (2008)
- [3] Casaletto *et al*, Surf. Sci. **582**, 582 (2005)