Formation of a Two-Dimensional Electron Gas in a Dense Lithium-Beryllium Alloy

Richard G. Hennig, Ji Feng, Neil W. Ashcroft and Roald Hoffmann

Do Li and Be form alloys? What are their electronic structures? Can they have higher superconducting temperatures than pure Li and Be?

- Li and Be form intermetallic compounds (a) under pressure
- Larger core of Li and smaller core of Beipush valence electron density into 2D electron gas
- Possible enhancement of T_c through increased density of states

Supported by NSF Computational resources provided by OSC

Cornell University College of Engineering Materials Science and Engineering

xshop nois

(b)

Cornell University College of Engineering Materials Science and Engineering

Beryllium is barely a metal.

rhennig@cornell.edu

$T_{\rm c} = 1.13 \cdot \theta_D \exp\left(-\frac{1}{a_0 \cdot V}\right)$

• Low density of states at Fermi level

• Superconducting transition temperature of only $T_c = 26 \text{ mK}$

• BCS theory of supeconductivity

• Highest Debye temperature of all metallic elements: $\Theta_{\rm D} = 1,100 \, {\rm K}$

Elemental beryllium

Alloying to improve T_c

- Light, metallic, electropositive
- However, Li and Be do not mix or form any intermetallic compounds

Can pressure lead to compound formation?

rhennig@cornell.edu

Computational Structure Predictions

Computational structure prediction based on optimization

- Stable crystal structure \Rightarrow Lowest free energy
- Minimize the free energy
- Non-trivial for the following reasons:
 - High-dimensional search space
 - Rough free energy surface, *i.e.* sensitive to small changes
 - Representation of structures by unit cells leads to redundancies
 - Accurate *ab-initio* free energy calculations are computationally expensive
- Only limited success of conventional optimization methods
 - Simulated annealing, Metadynamics, Minima hopping
- Recent advances in optimization methods:
 - ► *Random search* (Pickard & Needs) \Rightarrow Used in this work
 - Evolutionary algorithms (Oganov)

Random Search Method

Generate a population of random structures and relax them:

- Choose random unit cell translation vectors
- Renormalize the volume to a reasonable range of values
- Choose random atomic positions within the cell

May constrain the initial positions:

- Fix the initial positions of some of the atoms (e.g., defect)
- Insert molecules randomly (rather than atoms)
- Choose a particular space group

Relax population of random structures

- Use accurate density functional methods
- Increase accuracy during optimization

Evolutionary Algorithms

In evolutionary algorithms a *population* of candidate solutions is evolved over successive iterations of *random variation* and *selection*. Random variation provides the mechanism for discovering new solutions. Selection determines which solutions to maintain as a basis for further exploration.

Evaluation function: Ab initio free energy

Variation operators

- Heredity
 - Combining a fraction of each of two structures
 - Use spatially coherent slab to retain structural motifs
- Mutation
 - Random atom displacements and lattice strains
- Permutation
 - Swap pairs of atoms

Iterate until low-energy structure is found

C. W. Glass, A. R. Oganov, N. Hansen, Comp. Phys. Comm. (2006)

Comparison of Search Methods

Random searchEvolutionary algorithm• Simple to program• More complex rules• Successful for small unit cells• Successful for structures with
large unit cells and structural
motifs• SiH4, LiBe, H2O, H, N• CaCO3, MgSiO3, CO2, O, HEnergy/

Cornell University

College of Engineering

Materials Science and Engineering

Configuration coordinate

Structure Maps

- Pettifor structure map of A-B ordered alloy
- Adapted from Villars *et al*.
- Advantage: Fast, simple
- Disadvantage: Structures have to be known

н	12	1	Z	Z	d4																-							d4	294							de	de	
0	264	264	541	-	400	"he	Ze	12	he	1										d4	d4	d4	d4	d4							d4	d4	495	d4				
N							d4		d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	104	de	64	R	432	1	7
c			538	538	264						d4	d4				-							d4		d4	d4	d4		d4	d4	d4	d4	d4	d4	44	de	d4	X
S	ARA	eG	eG	400		1	12	V.	d4	12	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	44		438		hL	h			de	
Se		eG	eG	400		1	Z	12	64	1	d4	d4	04	d4	d4	d4	d4	d4	d 4	d4	d4	d4	d 4	44	d4	d4	d4	d4			de			de			ei	
Te			400	540		1	2	12	Pro-	1	ei	d4	d4	d4	d4	d4	d4	d4	d4		d4	Z	Z	d4	d4	d4	44	w4	de		ei			ei			ei	
P			Ay	Ay	35		eG	eG	d4	d4	d4	d4	d4	d 4	d 4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d 4	d4	d4	de	de	e	e	de	hL	R	hL	
As	1	Ay	Ay	Ay	35		eG	eG	d4	eG	d4	d4	d4	d 4	d4	d 4	d4	d4	44	d 4	d4	44	2	d4	d4	d4	d4	d4	64	de	1	e	e	hL	hL	hL		-
Sb	Ay	Ay	35	35					d4		d4	d4	d4	d4	d4	d4	44	d 4	d4	d 4	d 4	d 4	50	563	d4	d4	Z	d 4	P	553	ei	-		ei	X	7	ei	X
Bi	1			p3	p3						d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	d4	2	d4	d4	d 4	d 4	w4	553	553		X	X	X	\bigtriangledown	X	X	\heartsuit
B	7	1	7	7																			204		d4	-			d4	64	da	kU	kUI	kUI	HUI	w	(U)	0
Si	Gk	Gk	Gk	108		kU	KU I	kUI	kU	kUI	kUI	kUI	kUI	kUI	AU	NU.	RAU	kU	kU		kU	kU	kU	kU	125				240	240	P	P						
Ge	Gk	Gk	Gk	56	360	kUI	kUI	kUI		kU	kU1	kUI			kU1	kUI	kUI	kUI	kUI	kUI	kUI	kUI	kU	kU				đ 4	kU		125				7	H	P	7
Sn	or	or	or	or	15	kU1	kUI	kUI	p3	kUI															288		288	1		P							X	X
Pb	or	or	or	or	w4	kU1	kUI	p3	p3	p3																	288	288				7	1	7	7	X	$\overline{\mathbf{X}}$	9
Ga					w6			kU	p3		kUI	kUI	kUI	kUI	kUt	kUI	kUI	kUI	kUI	kUI	kUI	kUI	kUI	kUI	343		244	154	348		03	r		-	r	A		-
AI	X	X	X	X	w6					572	W4	-		mr	mr	mr	w4	mr	124	124	w4	w4	233	233				kU	kUI	kUI	03						-	w4
In				WG	WG			w4	w4		-	w4		w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	W4	03						See.	X	7	X	7		7	7
TI				WG	w4		w4	w4	w4	wq		w4	1	w4				34	-	17	14	-	1	34	X			-	1	1		R	$\overline{\mathbf{x}}$	9	7	X	1	5
Be	X	X		X	X			-		17		7		7	7	7	7	2	2	7	7	7	7	2	\cap					kUI	w4	P		TV	-	P	-	-
Zn	7	7	7	17	w6	w4	kU	kUI	w4	w4	44	wa	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4			-		-4		w4				7	1	-	7
Cd	1	-			w6	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	-					w2	w2	w2		w4	7	7		1	5
Hg	3		3	qt	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	wq	w4				p3	03	line i	p3		7	7	7	7	1	5						
Ma	X	X	X	X	X		w4		w4	w4	w4	w4	w4	w4	w4	4	w4	w4	w4	w4	w4	w4	w4	w4	7		X	1000	\mathbf{X}	X	X	7	5	$\overline{\mathbf{x}}$	1	Ø	7	5
Cu			7	7	\mathbf{X}	401	401	39	kU	17.	w4	w4	w4	w4	w4	w4	w4	w4		22	kU	kU	kU	kU					w4		63	1	\heartsuit	\heartsuit	1	\Diamond		5
Aq			7		w4	kU	154	217	1	kU	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4	w4			X		w2	w2	w2	1	9	9	5	\Diamond	$\overline{\mathbf{A}}$	5
Au	×4	w4			-4	kU	534	kUI	1	kU	wa	w4	-4	MA1	W4	-	741	w4	141	10	174	w4	44	kU				kU	lui a	w2	đ1	r	-	-	7	X	$\overline{\mathbf{A}}$	5
Pd .	1					kUI	kUI	w4	-	kUI	w4		w4	w4	w4	-	-	KU	kU1	kUl	kUI	kUI	kUI	kU1	kU			kU		a a a a a a a a a a a a a a a a a a a		w2			$\overline{\mathbf{x}}$	H	3	5
Pt	1	1	7		377				kU		w4	kU	kU	kU	kU	kU	kU	kU	kU	kU	NUT	HUI	KUI	kUI	kUI	kUI	33	kUI	-	F 24		1000	a 1	P3	$\overline{\mathbf{a}}$	01		$\overline{\mathbf{a}}$
Ni	1	1	7	1	X	X		-	kU		w4	NU.	NU.	NU	NU	IU	kU	45	JUI	kUI	kUI	kUI	kUI	KUI	kUI			156	kUI	kUI	끐	rv1	ryl	d IN	204	204	TV	Θ
Ir	1	1	7	1	377	\cap		7	w4		w4	20	w4	wd	4	w4		KUL	AU	-	and a		Store 1	-			33	ki II	W6		14	138	03	D3	HN	01		Θ
Rh	1	1	7	1	377				w4		w4	-	-4	44	12	1	64	w4	w4	44	kUI	kUT	kUI	kus				LU1	# 2	44				p 3	1.94		-	Θ
Co	1	1	7	1	1	1	1	1		7	w4	ku		unii				and a	kU		united in			-	-	-	509	kU	12		HZ.	-	CV	218			-	Θ
08	1	1	7	1	1	7	7	7		1	anda	2010		-	-	-	-	-		-	-	-	-	-	-			-	-		-	TH		ul A	-		-	Θ
Ru		1	7	1	1	1	7	-	wa	-	wa		wd	wet	-	-			-	-	-	-	-	-	wa		-	kIII					.,		-	-	-	Θ
	1	/1	1						1770		1100		1007	1997	-	-	-	-	-	-	-	-	-	-	h an	-	-		le el le	tait	Lee Le		_	563	_		-	9
Fe	7	1	9	1	/	1	7	7	7	X												/	/	X							W.A	The P		(4)		mul		
Fe		4	4	4	\langle	\langle	Ş	Z	K	Ă		-		_	_	_	-	-	-	-	4	4	6	\mathbf{A}		-	_	_	-		w4	rvl	_	WA	-	TV	Y	4
Fe				4	8		8	X	X	X			1	_							4	4	8	Ž			_		_		W4	rvl	_	w4	Z	TV	Ž	

Cornell University College of Engineering Materials Science and Engineering

Structure Prediction and Search Algorithm

- Do we understand the structures of intermetallics?
- Can we predict the structure of compounds?

Structure Search Algorithm

rhennig@cornell.edu

Computational Details

Density functional theory (VASP)

- Generalized gradient approximation (PBE)
- Plane-wave basis and PAW potentials
- Optimization of all parameters (atom positions and lattice vectors) at given pressure

Random structural search

- Use 20 50 starting structures for each selected pressure, composition and cell size
 - Pressure range: 0 200 GPa
 - Compositions: $Be_{1-x}Li_x = 0, 20, 25, 33, 40, 50, 60, 66, 75, 100 \%$
 - Cell size: Up to 15 atoms per primitive cell
- Symmetry identification using ISOTROPY (Stokes & Hatch, BYU)
- Check energy of higher symmetry structures
- Phonon dispersion calculation to confirm mechanical stability

Use of petascale computing for structure searches

Enthalpy of Formation of Li-Be Compounds

Stability increases with pressure dramatically at low pressures

Cornell University College of Engineering Materials Science and Engineering

rhennig@cornell.edu

Materials Science and Engineering

Cornell University

College of Engineering

rhennig@cornell.edu

rhennig@cornell.edu

Cornell University College of Engineering Materials Science and Engineering

rhennig@cornell.edu

rhennig@cornell.edu

Four novel Li-Be phases become stable under pressure

Cornell University College of Engineering Materials Science and Engineering

rhennig@cornell.edu

Electronic Structure of Li-Be phases

• Beryllium's DOS at the Fermi level is nearly constant over entire pressure range: $g(\varepsilon_F) = 0.04 \text{ eV}^{-1}$ per valence electron

80 GPa	LiBe4	LiBe2	LiBe
	R-3m	P6/mmm	P2 ₁ /m
$g(\varepsilon_{\rm F})$ in eV ⁻¹ per Valence electron)	0.06	0.06	0.12

For a comparable e-ph coupling T_c would be about 32 K

Cornell University College of Engineering Materials Science and Engineering

rhennig@cornell.edu

Two-dimensional Electronic Gas in LiBe

Electron density shows a two-dimensional, layered structure

Cornell University College of Engineering Materials Science and Engineering

rhennig@cornell.edu

Electronic Structure of Li-Be phases

Analytically solvable model

$$\mathcal{H}_{xy} = \sum_{\mathbf{k}} \frac{\hbar^2 k^2}{2m^*} c_k^{\dagger} c_k$$
$$\mathcal{H}_z = W \sum_i n_{2i} - t \sum_i \left(c_i^{\dagger} c_{i+1} + h.c. \right)$$
$$\frac{2t^2/W}{1}$$

• In the limit *W* >> *t* it yields the shown DOS

Electronic Structure of Li-Be phases

- Extract *W* from step-shape of density of states: $2t^2/W = 0.05 \text{ eV}$
- Assuming a typical value of t = 1...2 eV yields a value of W > 20eV
 - Observe *large effective electronegativity difference* between Li and Be
 - However, first ionization potential is only 4 eV higher in Li than in Be
 - Insufficient to produce narrow step at bottom of valence band

What is the origin of the large potential difference between Li and Be layers?

- Electronegativity difference arises because potential energy difference between Li and Be layers increases as a result of **core overlap**
 - At 80 GPa: $d_{\text{Li-Li}}$ and $d_{\text{Be-Be}} = 1.9-2.0$ Å
 - Ionic radii: $r_{\text{Li+}} = 0.76 \text{ Å}$ and $r_{\text{Be2+}} = 0.27 \text{ Å}$
 - Li core electrons show 1 eV dispersion

Substantial core overlap of the large Li ions pushes valence electrons into Be layers resulting in a quasi-2D electron gas.

Cornell University College of Engineering Materials Science and Engineering

rhennig@cornell.edu

Formation of a Two-Dimensional Electron Gas in a Dense Lithium-Beryllium Alloy

Richard G. Hennig, Ji Feng, Neil W. Ashcroft and Roald Hoffmann

Li-Be alloy is unstable at ambient pressure.

Li-Be alloy is stabilized at high density & pressure. Li ionic cores start to overlap, forming "walls".

Li's outer electrons are forced to Be's layer, forming a 2D electron gas there

Cornell University College of Engineering Materials Science and Engineering

Nature 451, 445 (2008)

Formation of a Two-Dimensional Electron Gas in a Dense Lithium-Beryllium Alloy

Richard G. Hennig, Ji Feng, Neil W. Ashcroft and Roald Hoffmann

Do Li and Be form alloys? What are their electronic structures? Can they have higher superconducting temperatures than pure Li and Be?

(a)

Be

- Li and Be form intermetallic compounds under pressure
- Possible enhancement of T_c through increased density of states
- Larger core of Li and smaller core of Be push valence electron density into 2D electron gas
- Fascinating high-pressure chemistry of alloys from simple elements

They used to be called the simple elements

Cornell University College of Engineering Materials Science and Engineering

rhennig@comen.cou

Electronic Structure Workshop June, 2008 • Urbana-Champaign, Illinois

b

Two Open Postdoc Positions Computational Materials Science – Cornell University

1. Modeling and design of strongly correlated transition metal oxides

- Joined between RGH (Materials Science and Engineering) and Craig Fennie (Applied and Engineering Physics)
- DFT, GW, and QMC computations to understand the physics and materials science of complex oxide bulk solids and nanostructures
- MRSEC program "Controlling ComplexElectronic Materials"

2. Quantum Monte Carlo Petascale Algorithms and Applications

- Joined between RGH (Materials Science and Engineering) and Cyrus Umrigar (Physics)
- DOE program "Quantum Monte Carlo Endstation for Petascale Computing"

If you are interested, talk to me or Cyrus or e-mail us.

