Diagrammatic Monte Carlo methods for Fermions

Philipp Werner

Department of Physics, Columbia University

PRL 97, 076405 (2006)PRB 74, 155107 (2006)PRB 75, 085108 (2007)PRB 76, 235123 (2007)PRL 99, 126405 (2007)PRL 99, 146404 (2007)

Support: NSF-DMR-0705847

Outline

- Motivation
 - Dynamical mean field theory for fermionic lattice models
 ⇒ impurity models
- Recent advances im methodology
 - Diagrammatic Monte Carlo approach
 - \Rightarrow weak-coupling expansion
 - \Rightarrow expansion in hybridization
- Application
 - Metal-insulator transition in the Hubbard model
 - "Spin glass" transition in a 3-orbital model

- Collaborators
 - A. J. Millis, E. Gull, M. Troyer

Introduction

Introduction

McWhan et al., (1973)

Urbana, June 08

Introduction

Simulation of correlated lattice models

$$H_{\text{Hubbard}} = U \sum_{i} n_{i\uparrow} n_{i\downarrow} - t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma}$$

- Exact diagonalization: up to 20 sites
- Monte Carlo: fermion sign problem

- \Rightarrow Simulation of 2D, 3D lattice models not possible
- ⇒ Need new methods / approximate descriptions
 - e. g. Dynamical Mean Field Theory (DMFT)

Motivation

Dynamical mean field theory Metzner & Vollhardt (1989), Georges & Kotliar (1992)

• Lattice model

$$H_{\text{latt}} = U \sum_{i} n_{i\uparrow} n_{i\downarrow} - t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma}$$

• Quantum impurity model

 $H_{\rm imp} = U n_{\uparrow} n_{\downarrow} - \sum_{k,\sigma} (t_k c_{\sigma}^{\dagger} a_{k,\sigma}^{\rm bath} + h.c.) + H_{\rm bath}$

Motivation

Dynamical mean field theory Metzner & Vollhardt (1989), Georges & Kotliar (1992)

• Lattice model

$$H_{\text{latt}} = U \sum_{i} n_{i\uparrow} n_{i\downarrow} - t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma}$$

• Effective action (hybridization function $F(\tau)$) $S = U \int d\tau n_{\uparrow}(\tau) n_{\downarrow}(\tau) - \sum_{\sigma} \int d\tau d\tau' c_{\sigma}(\tau) F_{\sigma}(\tau - \tau') c_{\sigma}^{\dagger}(\tau')$

• Self-consistency condition $G_{\rm latt}^{\rm loc}(\tau) = G_{\rm imp}(\tau)$

Motivation

Dynamical mean field theory Metzner & Vollhardt (1989), Georges & Kotliar (1992)

• Self-consistency loop couples the impurity to the lattice

• Computationally expensive step: solution of the impurity problem

Example: Hubbard model

Correlation driven metal-insulator (Mott) transition

• Phasediagram for V₂O₃ McWhan et al., (1973)

paramagnetic DMFT solution 1-band Hubbard model

Georges & Krauth (1993), Blümer (2002)

More realistic multi-band simulation requires powerful impurity solvers

Weak coupling vs. strong coupling approach

- Diagrammatic QMC = stochastic sampling of Feynman diagrams
- Hubbard model: $Z = TrT_{\tau}e^{-S}$ with action

$$S = \underbrace{-\sum_{\sigma} \int_{0}^{\beta} d\tau d\tau' c_{\sigma}(\tau) F_{\sigma}(\tau - \tau') c_{\sigma}^{\dagger}(\tau')}_{S_{F}} \underbrace{+U \int_{0}^{\beta} d\tau n_{\uparrow} n_{\downarrow}}_{S_{U}}$$

• Weak-coupling expansion

Rombouts et al., PRL (1999); Rubtsov et al., PRB (2005); Gull et al., EPL (2008) Treat quadratic part (S_F) exactly, expand Z in powers of S_U

• Hybridization expansion

Werner et al., PRL (2006); Werner & Millis, PRB (2006); Haule, PRB (2007); Werner & Millis, PRL (2007)

Treat local part (S_U) exactly, expand Z in powers of S_F

Expansion in U + auxiliary field decomposition Rombouts et al., PRL (1999), Gull et al., EPL (2008)

• Expand Z in powers of $K/\beta - U(n_{\uparrow}n_{\downarrow} - (n_{\uparrow} + n_{\downarrow})/2)$

• Decouple "interaction vertices" using *Rombouts et al., PRL (1999)*

$$K/\beta - U(n_{\uparrow}n_{\downarrow} - (n_{\uparrow} + n_{\downarrow})/2) = (K/2\beta) \sum_{s=-1,1} e^{\gamma s(n_{\uparrow} - n_{\downarrow})}$$
$$\cosh(\gamma) = 1 + (\beta U/2K)$$

Expansion in U + auxiliary field decomposition Rombouts et al., PRL (1999), Gull et al., EPL (2008)

• Weight of the configuration ($\Gamma_{\sigma} = \text{diag}(\gamma \sigma s_1, ...), (G_0)_{ij} = g_0(\tau_i - \tau_j)$)

$$w(\{s_i, \tau_i\}) = \left(\frac{Kd\tau}{2\beta}\right)^n \prod_{\sigma} \det\left(e^{\Gamma_{\sigma}} - G_{0\sigma}(e^{\Gamma_{\sigma}} - I)\right)$$

• Local updates: insertion/removal of an auxiliary spin

• Advantage: less spins than Hirsch-Fye method

 \Rightarrow faster updates, shorter autocorrelation (thermalization) times

Expansion in the impurity-bath hybridization F Werner et al., PRL (2006)

- Non-interacting model: $Z = TrT_{\tau} \exp\left[\int_{0}^{\beta} d\tau d\tau' c(\tau) F(\tau \tau') c^{\dagger}(\tau')\right]$
- Expand exponential in powers of *F*

- Some diagrams have negative weight
 - \Rightarrow sampling individual diagrams leads to a severe sign problem

Expansion in the impurity-bath hybridization F Werner et al., PRL (2006)

• Collect the diagrams with the same $\{c(\tau_i^s), c^{\dagger}(\tau_i^e)\}$ into a determinant

 $\det \mathcal{F}$

$$(\mathcal{F})_{m,n} = F(\tau_m^e - \tau_n^s)$$

- \rightarrow resums huge numbers of diagrams (100! = 10¹⁵⁸)
- \rightarrow eliminates the sign problem

• Z =sum of all operator sequences

Generalizations

• Arbitrary interactions: $U^{\alpha\beta\gamma\delta}c^{\dagger}_{\alpha}c_{\beta}c^{\dagger}_{\gamma}c_{\delta}, \vec{S} \cdot c^{\dagger}_{\alpha}\vec{\sigma}_{\alpha,\beta}c_{\beta}, \vec{S} \cdot \vec{L}, \dots$ Werner & Millis, PRB (2006); Haule, PRB (2007)

 \oplus local problem treated exactly

 \Rightarrow flexible

- \Rightarrow histogram of relevant states
- scales exponentially with
 # sites, orbitals

Efficiency

Scaling of the average perturbation order $\langle k \rangle$ Gull et al, PRB (2007)

- Computational effort grows O(k³) with size k of determinants
- Weak coupling expansion: $\langle k \rangle \sim U$
- Hybridization expansion:
 (k) decreases with increasing U

 \Rightarrow In the strong correlation regime, speed-ups of $10^4\text{--}10^5$

 \Leftrightarrow

1-band Hubbard model

Metal-insulator transition on the 2D square lattice (bandwidth = 8t) Gull et al, EPL (2008)

- Single site DMFT: $H_{\text{loc}} = U n_{\uparrow} n_{\downarrow}$
 - \Rightarrow "Mott" transition at $U_c \approx 12t$
- 4 site DMFT:
 - $H_{\rm loc} = \sum_{k,\sigma} \epsilon_k c^{\dagger}_{k,\sigma} c_{k,\sigma} + \sum_i U n_{\uparrow} n_{\downarrow}$
 - \Rightarrow "Slater" transition at $U_c \approx 4t$

collapse into plaquette singlet state

3-orbital model

Non-Fermi liquid behavior in multi-orbital models with Hund coupling

Werner et al, arXiv:cond-mat/0806.2621

•
$$H_{\mathsf{loc}} = \sum_{\alpha} U n_{\alpha,\uparrow} n_{\alpha,\downarrow} + \sum_{\alpha \neq \beta,\sigma} U' n_{\alpha,\sigma} n_{\beta,-\sigma} + \sum_{\alpha \neq \beta,\sigma} (U'-J) n_{\alpha,\sigma} n_{\beta,\sigma} - \sum_{\alpha \neq \beta} J(\psi^{\dagger}_{\alpha,\downarrow} \psi^{\dagger}_{\beta,\uparrow} \psi_{\beta,\downarrow} \psi_{\alpha,\uparrow} + \psi^{\dagger}_{\beta,\uparrow} \psi^{\dagger}_{\beta,\downarrow} \psi_{\alpha,\uparrow} \psi_{\alpha,\downarrow} + h.c.) - \sum_{\alpha,\sigma} \mu n_{\alpha,\sigma} \eta_{\alpha,\sigma} + \sum_{\alpha \neq \beta,\sigma} U' n_{\alpha,\sigma} \eta_{\beta,\sigma} + \sum_{\alpha \neq \beta,\sigma} U' \eta_{\alpha,\sigma} \eta_{\alpha,\sigma} + \sum_{\alpha \neq \beta,\sigma} U' \eta_{\alpha,\sigma} + \sum_{\alpha \neq \beta,\sigma$$

- Bethe lattice with bandwidth 4t, U' = U 2J
- Phase diagram for J = U/6 (left) and self-energy at U/t = 8 (right)

3-orbital model

Non-Fermi liquid behavior in multi-orbital models with Hund coupling

Werner et al, arXiv:cond-mat/0806.2621

•
$$H_{\mathsf{loc}} = \sum_{\alpha} U n_{\alpha,\uparrow} n_{\alpha,\downarrow} + \sum_{\alpha \neq \beta,\sigma} U' n_{\alpha,\sigma} n_{\beta,-\sigma} + \sum_{\alpha \neq \beta,\sigma} (U'-J) n_{\alpha,\sigma} n_{\beta,\sigma} - \sum_{\alpha \neq \beta} J(\psi_{\alpha,\downarrow}^{\dagger} \psi_{\beta,\uparrow}^{\dagger} \psi_{\beta,\downarrow} \psi_{\alpha,\uparrow} + \psi_{\beta,\uparrow}^{\dagger} \psi_{\beta,\downarrow}^{\dagger} \psi_{\alpha,\uparrow} \psi_{\alpha,\downarrow} + h.c.) - \sum_{\alpha,\sigma} \mu n_{\alpha,\sigma}$$

- Transition to a phase with frozen moments
- Broad quantum critical regime $\Rightarrow Im\Sigma \sim \sqrt{\omega_n} \Rightarrow \sigma(\Omega) \sim 1/\sqrt{\Omega}$

Conclusions & Outlook

- Diagrammatic MC simulation of impurity models:
 - Weak-coupling method for large impurity clusters
 - "Strong-coupling" method for multi-orbital models

- On-going projects:
 - LDA+DMFT simulation of transition metal oxides and actinide compounds
 - Adaptation of the diagrammatic approach to real-time dynamics (non-equilibrium systems)
- Job openings: PhD and postdoc position at ETH Zürich