A stochastic independent-electron approach to correlated systems

Shiwei Zhang College of William & Mary, USA

Outline

- Why a new QMC approach?
- The phaseless auxiliary-field QMC
 - Both electronic structure (PW or localized) and model calculations
 - Potential for improved accuracy and robustness
- Molecules and solids near equilibrium geometry
- Bond breaking: stronger correlations
- Phase separation in the Hubbard model

Collaborators:

- Wissam Al-Saidi
- Chia-Chen Chang
- Henry Krakauer
- Hendra Kwee
- Wirawan Purwanto
- Eric Walter

Support:

- ARO, NSF, DOE petascale QMC-endstation, DOE-cmsn

Some references: (http://physics.wm.edu/~shiwei)

- Zhang & Krakauer, PRL, '03
- Al-Saidi et. al., PRB, '06; JCP, '06; JCP, '06; JCP, '07
- Suewattana et. al., PRB, '07
- Kwee et. al., PRL, '08
- Purwanto et. al., JCP, '08
- Chang & Zhang, arXiv:0805.4831

Introduction: why auxiliary-field methods?

Recall sign problem:

In QMC, we need + and - walkers to cancel

2 fermions -- ground state: same problem

Why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state:

Solid state or quantum chemistry?

→ basis

Why auxiliary-field methods?

Reduce sign problem:

many *free* fermions:

Now *turn on* interaction. Can we use these as walkers ?

Summary: basic formalism of AF methods

To obtain **ground state**, use projection in imaginary-time:

 $|\Psi^{(n+1)}\rangle = e^{-\tau \hat{H}} |\Psi^{(n)}\rangle \xrightarrow{n \to \infty} |\Psi_0\rangle$

au: cnst, small $|\Psi^{(0)}\rangle$: arbitrary initial state

Electronic Hamiltonian: (2nd quantization, given any 1-particle basis)

interacting system $\rightarrow \sum$ (non-interacting system in auxiliary fields)

AF methods: some background

• Applied in models in condensed matter, nuclear physics, (lattice QCD),

Scalapino, Sugar, Hirsch, White et al.; Koonin; Sorella,

interacting $\rightarrow \sum$ (non-interacting in fields)

basic idea: Monte Carlo to do **sum** (path integral)

- However,
 - sign problem for "simple" interactions (Hubbard)
 - phase problem for realistic interaction

Fahy & Hamann; Baroni & Car; Wilson & Gyorffy; Baer et. al.;

• Reformulate ----

New AF QMC approach

Random walks in Slater determinant space:

Recall
$$|\Psi^{(n+1)}\rangle = e^{-\tau \hat{H}} |\Psi^{(n)}\rangle \xrightarrow{n \to \infty} |\Psi_0\rangle$$
 SZ, Carlson, Gubernatis
 $\int H$ -S transformation
 $\int e^{-\sigma^2/2} e^{\hat{\mathbf{v}}(\sigma)} d\sigma$ 1-body: $\sum_{i,j} v_{ij}(\sigma) c_i^{\dagger} c_j$

Exact so far

New approach

Sign/phase problem is due to --

Reasonable to expect it's reduced, since

tendency for global collapse to bosonic state is removed

Controlling the phase problem

Sketch of approximate **solution**:

- Modify propagator by "gauge transformation":
 phase → degeneracy (use trial wf)
- Project to one overall phase:

break "rotational invariance"

• subtle, but key, difference from: real $\langle \Psi_T | \phi \rangle > 0$ (Fahy & Hamann; Zhang, Carlson, Gubernatis)

Before:

After:

Controlling the phase problem

Quantify the approximation?

Application: molecular binding energies

- All with single mean-field determinant as trial w.f.
- "automated" post-HF or post-DFT

Molecular binding energies

- ~ 100 systems (also IP, EA, a_B , ω): eq. geom., moderate correlation
- Error < a few mHa (0.1 eV)
- Accuracy ~ CCSD(T) (gold standard in chemistry, but **N**⁷)
- QMC: linear superposition of 'LDA solutions' in random fields

scaling to petascale ~ scaling LDA to O(100) processors

F₂ bond breaking

Mimics increasing correlation effects:

F₂ bond breaking --- larger basis

Potential energy curve:

- LDA and GGA/PBE well-depths too deep
- **B3LYP** well-depth excellent, but "shoulder" too steep
- -199.26 -199.28 -199.30 (H) -199.32 Ц -199.34 C QMC/UHF-sp -199.36 - LDA GGA/PBE cc-pVTZ -199.38 B3LYP -199.40 2.0 1.0 1.5 2.5 3.0 R/R_{e}

- Compare with expt
 - --- spectroscopic cnsts:

	Expt ^a	AFQMC	RCCSD(T)	UCCSD(T)	LSDA	GGA/PBE	B3LYP	
Basis: cc-pVQZ								
r_e (Å)	1.4131(8)	1.411(2)	1.4108	1.3946	1.3856	1.4136	1.3944	
$\omega_0 (\mathrm{cm}^{-1})$	916.64	912(11)	929	1036	1062	997	1109	
$D_e (eV)^b$	1.693(5)	1.77(1)	_	1.567	3.473	2.321	1.634	
$D_e \; (eV)^c$	1.693(5)	1.70(1)	1.594	1.569				

Purwanto et. al., JCP, '08

Large extended systems

Cohesive energies: (eV/atom)

	diamond Si	bcc Na
LDA	5.086	1.21
DMC	4.63(2)	0.991(1) w/o CPP
		1.022(1) w/ CPP
present	4.59(3)	1.143(7)
expt.	4.62(8)	1.13

- plane-wave + pseudopotential calculations
- DMC -- Needs et al (Cambridge group)
- Na:
 - metal: k-point integration in many-body QMC
 - new finite-size correction scheme

Kwee, et al, PRL, '08

Application: Hubbard model

• Simplest model combining band structure and interaction:

$$H = \mathbf{K} + \mathbf{V} = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma}) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

electrons on a 2-D lattice

- near-neighbor hopping
- on-site repulsion

Size
$$N = L \times L$$

Filling
$$\langle n \rangle = \frac{N_{\uparrow} + N_{\downarrow}}{N}$$

- Renewed interest from experimental opportunities:
 - optical lattice emulators
- Long-standing questions: (conflicting numerical results)
 model for high-Tc?

Chang & Zhang, arXiv:0805.4831

Hubbard model: equation of state

- CPMC: Zhang et.al., 1997
- Constrained-path auxiliary field QMC (CPMC) is accurate.
- There are kinks at closed-shell fillings => large shell effects.

Hubbard model: equation of state

Ground-state energy per site at U = 4 (in units of t)

Hubbard model: persistent shell effects

- One signal for phase separation: does e(h) turn ?
- Shell effect persists to >40x40, leads to bias e(lipise signal atvolute)
 h=1-n: doping

Twist averaged boundary conditions (TABC)

- TABC widely used in band structure methods; recently in QMC (Lin, Zhong & Ceperley)
- Hubbard:
 - A phase when electron goes around the lattice:

 $\Psi(x+L) = e^{i\theta_x}\Psi(x)$

- Modifies kinetic energy:

$$H = \sum_{i,\sigma} \left(-t e^{i\theta_x/L} c_{i+1\sigma}^{\dagger} c_{i\sigma} - t e^{-i\theta_x/L} c_{i-1\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

- Breaks degeneracy in free-particle spectrum.
 But introduces phase problem
 - → use the new method example of "downfolded hamilt"

Hubbard model: equation of state

Phaseless AF QMC with TABC:

ullet

• Convergence to thermodynamic limit achieved

Hubbard model: phase separation

Phaseless AF QMC with TABC:

Minimum in e_h(h) at doping h ~ 0.1

• Appears to shift (larger) as U increases

 $|\Psi_{T}\rangle$ has no min (U=0 wf)

Relation: phase separation & antiferromagnetism

• Half-filling: antiferromagnetic (AF)

(Furukawa & Imada 1991, Tang & Hirsch 1983, and many more...)

Calculate AF correlation as density increases (\rightarrow half-filling)

Relation: phase separation & antiferromagnetism

Spin structure factor:

Summary

- AF QMC : random walks in mean-field space
 - Potentially a method to systematically go beyond LDA while using much of its machinery

--- superposition of independent-particle calculations

- Approximate, but accuracy appears systematic
- Applications & benchmarks (~100 systems)
 - *s*-, *p*-, and *d*-electron atoms, molecules, and bulk
 - Bond-breaking in molecules increased correlation
 - Phase separation in 2-D repulsive Hubbard model:
 - upon doping, two spatial regions: n=1 & n=n_c (~0.9)
 - causes loss of long-range AF order at $\rm n_{c}$