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A crucial factor in our transport calculation, the over-
lap between the evanescent Bloch function ψ∓k(r) and
∆VL/R,

ΨL/R(r) = ψ∓k(r)∆VL/R(r) (9)

is exponentially localized at the left/right contacts. This
means that in order to compute the conductance we only
need to compute the spectral operator in Eq. 8 near the
contacts. A plot of ΨL/R(r) for device (c) is shown in
Fig. 6. This plot allows us to quantify how the different
Au layers contribute to the conductance. From panel (c)
of Fig. 6 we extract that about 62% of gc comes from the
region occupied by the first Au atom of the leads, i.e. the
contact Au atom. The adjacent Au layer contributes to
only 27% of gc and the remaining Au layers contribute to
less than 10% of gc. We thus infer that variations in the
contact geometry changing a little the Au-N bond length
and the Au-N-C bond angle could lead to variations of
gc that should not be larger than 50% of the value found
in the present calculations.

In conclusion, we have presented a novel approach
to calculate efficiently the tunneling conductance. This
scheme opens the way for first principles calculations
of the conductance in devices made of long molecular
chains, like e.g. the alkyl chains in the experiments of
Ref. 26. Our approach puts in evidence the exponential
dependence of the conductance on the molecular length
and links the decay length to a precise property of the
complex band structure of a suitably defined periodic
molecular chain. Moreover the formula for the contact
conductance, i.e. the pre-exponential factor in the con-
ductance, is relatively simple and involves overlap inte-

grals between the evanscent waves of the periodic molec-
ular chain and physical quantities that can be easily ex-
tracted from an equilibrium self-consistent calculation for
the full device, including the electrodes and the molecular
chain that connects them. Since only the region near the
contacts is important, a conductance calculation can be
performed on a finite model of the device, which can be
conveniently done with a supercell geometry like in stan-
dard band structure calculations. Finally, the formula
is simple enough to allow for semi-quantitative estimates
of the conductance without the need for numerical cal-
culations, like we did to estimate the effect on the con-
ductance of small changes in the atomic geometry at the
contacts.

For alkyl chains linked to gold electrodes via amine
groups, our theoretical prediction for the tunneling con-
ductance is in very good agreement with the recent exper-
imental measurements reported in Ref. 1 and the theoret-
ical predictions of Ref. 27. We found that the level align-
ment in these devices is less important than one could
anticipate due to the flattening of the relevant complex
band away from the gap edges. Finally, we found that the
contact conductance is determined mainly by the chemi-
cal link between a single atom of each gold electrode and
the amine group at the corresponding end of the molec-
ular chain.
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The study of electron transport through single molecules is

essential to the development of molecular electronics.1 Indeed,

trends in electronic conductance through organic nanowires have

emerged with the increasing reliability of electron transport

measurements at the single-molecule level. Experimental and

theoretical work has shown that tunneling distance, HOMO-LUMO
gap, and molecular conformation influence electron transport in

both saturated and π-conjugated nanowires.2,3 However, there is
relatively little experimental data on electron transport through fused

aromatic rings.4 Here we show using diaminoacenes that conductiv-

ity depends not only on the number of fused aromatic rings in the

molecule, which defines the molecular HOMO-LUMO gap, but
also on the position of the amino groups on the rings. Specifically,

we find that conductance is highest with minimal disruption of

aromaticity in fused aromatic nanowires.

We recently reported on the improved reliability and reproduc-

ibility of conductance measurements using amines instead of thiols

or isonitriles in metal-molecule-metal junctions.5 Junctions are
formed by breaking Au point contacts in a solution of diamines.

Conductance measurements for diaminoacenes were recorded in

1,2,4-trichlorobenzene solution by repeatedly forming and breaking

Au point contacts with a modified STM tip6 (Figure 1b, inset).

Typically, diamines were sublimed under vacuum prior to use.

Conductance traces measured as a function of tip-sample displace-
ment reveal quantized conductance steps observed at integer

multiples of G0 (2e2/h), the fundamental quantum of conductance.

Many of the traces reveal steps at molecule-dependent conductance

values below G0 (Figure 1a) due to conduction through a single

molecule bridging the gap between the two Au point-contacts.

Repeated measurements give a statistical assessment of the junction

properties presented as conductance histograms (Figure 1b) with

the peak representing the most probable measured conductance

value for the molecular junction.

Figure 1b shows representative conductance histograms resulting

from several thousand conductance traces for three molecules, 1,4-

diaminobenzene, 2,6-diaminonaphthalene, and 2,6-diaminoan-

thracene along with a control histogram measured in the solvent

alone. Peaks in the conductance histograms determined by Lorent-

zian fits to the data correspond to the most prevalent single molecule

junction conductance. Figure 2 shows the measured conductance

values for five different acenes. For the upper series, 1,4-

diaminobenzene, 1,4-diaminonaphthalene, and 9,10-diaminoan-

thracene, the conductance increases with increasing number of

benzo rings, whereas in the lower series, 1,4-diaminobenzene, 2,6-

diaminonaphthalene, and 2,6-diaminoanthracene, the conductance

decreases with increasing number of rings.

We have demonstrated previously3 that the low bias conductance

through polyphenyls attached to gold electrodes with amino groups

is through a nonresonant tunneling process. Quantitative trends in

the junction conductance have been analyzed using quantum

chemistry calculations based on density functional theory for amines

coupled to Au clusters to represent the electrodes.7-9 Frontier

orbitals on the contact Au atoms are tunnel coupled through the

molecular backbone resulting in a symmetric and antisymmetric

pair. The conductance is proportional to the square of the energy

splitting between these two orbitals10 and represents well the trends

observed in the conductance through amine linked junctions.3,5,11
† Columbia University.
‡ Brookhaven National Laboratory.

Figure 1. Representative conductance traces (a) and histograms (b) for
1,4-diaminobenzene (1), 2,6-diaminonaphthalene (2), 2,6-diaminoanthracene
(3), and solvent only. The lower inset illustrates 1,4-diaminonaphthalene
binding in the metal-molecule-metal junction.

Figure 2. Plots of conductance (G0, circles) and square of tunnel coupling
(eV2, X’s) vs number of benzo rings (log scale). The inset shows
experimental conductance values in the 2,6-diamine series with a linear
abscissa. The experimental conductance value for 9,10-diaminoanthracene
was determined from fewer conductance traces and has a larger error bar
(see Supporting Information).
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Figure 9.  (a) Conductance histograms for a series of 1,N diaminoalkanes, N=2 to 12.  (b) Most probable 

conductance for the alkane series plotted as a function of the N-N separation.  Also shown are the same 

data for diamino polyphenyls (N=1 to 3) and diamino polyacenes (N=1 to 3).  For comparison, the 
calculated tunnel probability is plotted for the same three families, but with polyacenes extended to N=5.  

The right hand scale is chosen so the theory and experiment coincide for 1,4 diaminobenzene. 
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Figure 10. Conductance histograms for three variations on short molecular wires designated by the insets 

(bis-(4-aminophenyl)acetylene, Ethynyl; 4,4’ diaminostilbene, Vinyl; 4,4’ diaminoazobenzene, Azo). 
 

Length Dependence of Conductance. In addition to tem-
perature independence, the superexchange mechanism predicts
that the conductance decreases exponentially with molecular
length, while the hopping mechanism predicts a weaker
conductance dependence on molecular length. We thus measured
N-alkanes terminated with diamine and dicarboxylic-acid an-
choring groups as a function of molecular length by varying
the number of -CH2 units in the alkane chain. The measured
conductance values in logarithmic scale together with the value
of dithiol-terminated alkanes are plotted in Figure 6. As
mentioned above, the error bars are determined from fwhm of
the first peak in each conductance histogram. All data sets can
be described by G ) AN exp(-!NN),29 where G is the
conductance and N the number of methylene units, which
strongly suggests superexchange as the conduction mechanism
in all molecules. AN is a constant determined by the molecule-
electrode coupling strength and reflects the contact resistance.
!N is the tunneling decay constant, an important parameter that
describes the efficiency of electron transport along the mol-
ecules. AN and !N, for all the three anchoring groups and for
both HC and LC peaks, are listed in Table 1.
AN is highly sensitive to the type of anchoring group. For

example, AN (HC) varies in the order of is 0.66Go, 0.037Go,
and 0.007Go for dithiol-, diamine-, and dicarboxylic-acid-
terminated alkanes, respectively. For the LC set, AN (LC) varies
in the same order. On the basis of this observation, one may
intuitively conclude that the S-Au bond gives the smallest
contact resistance while the COOH-Au bond has the highest

contact resistance. It is interesting to consider the binding
strengths of these anchoring groups on Au. The best-studied
case is Au-S, which has a binding energy of ∼40 kcal/mol.7
However, Au-N and Au-O bond strengths for -NH2 and
-COOH adsorption on Au are estimated to be the order of 8
and 2 kcal/mol, respectively.30 Thus, the contact resistance
appears to correlate with the binding strengths of three
contacts: stronger binding gives a lower contact resistance.
While it is not clear if the observed correlation is general, the
anchoring group of a molecule is expected to affect the
electronic coupling between the molecule and the electrode and
thus the contact resistance. One factor that the anchoring group
might affect the electronic coupling between the molecular core
(alkane) and the electrodes is the size of the anchoring group.
The distance between the first C atom of alkanethiols and Au
(111) (hollow sites) is 3.72 Å according to calculations by
Sellers.31 We are not aware of any reports on the corresponding
distances for amine and carboxylic-acid alkanes, but the
distances estimated from the atomic radii are 3.88 and 4.69 Å
for amine and carboxylic acid, respectively. Assuming an
exponential decay in the electronic coupling with a decay
constant of 1 Å-1, the corresponding ratio in the coupling for
carboxylic acid, amine, and thiol is 1:2.3:2.6, which is much
smaller than the differences in the measured contact resistance
for these three anchoring groups. Thus, size alone does not seem
to explain the observation.10

We also observed differences in !N between different
anchoring groups with a trend !N(dithiol) > !N(diamine) g !N-
(dicarboxyl acid). !N values, ranging between ∼0.8 and ∼1.0
per -CH2 unit or between 0.6 and 0.8 Å-1, are close to the
values reported in the literature.32 The differences in !N are small
for three anchoring groups, but the small difference can
significantly affect long-distance electron transport in the
molecules due to the exponential dependence of the conductance
onlength.Bothexperimentalevidence9andtheoreticalcalculations33-35

indicate that !N depends on the alignment of the molecular

(29) Magoga, M.; Joachim, C. Phys. ReV. B 1997, 56, 4722-4729.

(30) Tarazona-Vasquez, F.; Balbuena, P. B. J. Phys. Chem. B 2004, 108, 15992-
16001.

(31) Sellers, H.; Ulman, A.; Shnidman, Y.; Eilers, J. E. J. Am. Chem. Soc. 1993,
115, 9389-9401.

(32) Wang, W. Y.; Lee, T. H.; Reed, M. A. Proc. IEEE 2005, 93, 1815-1824.
(33) Yaliraki, S. N.; Kemp, M.; Ratner, M. A. J. Am. Chem. Soc. 1999, 121,

3428-3434.
(34) Tomfohr, J. K.; Sankey, O. F. Phys. ReV. B 2002, 65, 245105.
(35) Xue, Y. Q.; Datta, S.; Ratner, M. A. J. Chem. Phys. 2001, 115, 4292-

4299.

Figure 6. Logarithmic plots of single-molecule conductance vs molecular length for dithiol- (orange), diamine- (blue), and dicarboxylic-acid-terminated
(purple) alkanes: (a) HC and (b) LC. Each conductance value is determined by fitting the first peak of the conductance histogram of each molecule with
a Gaussian function, and the corresponding error bar is the full width at half-maximum (fwhm) conductance. The solid lines are the linear fits that yield !N
shown in the figures and also in Table 1.

Table 1. ! and A for Three Anchoring Groups

Au!SH!(CH2)n!SH!Au

junctions

Au!NH2!(CH2)n!H2N!Au

junctions

Au!COOH!(CH2)n!HOOC!Au

junctions

HC
!Na 1.02((0.14) 0.81((0.01) 0.81((0.01)
!a 0.81((0.11) 0.65((0.01) 0.61((0.01)
AN 0.66((1.37)Go 0.037((0.004) Go 0.007((0.0005) Go

LC
!N 1.08((0.12) 0.88((0.003) 0.77((0.001)
b 0.87((0.08) 0.70((0.003) 0.57((0.01)
AN 0.22((0.36)Go 0.0032((0.00006)Go 0.0006((0.00002)Go

a !N and ! denote the decay constant per -CH2 unit and Angstrom,
respectively.
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Framework:  - an equilibrium system that is perturbed by a weak, time oscillating electric field

                         - DC regime obtained by letting the frequency go to zero

Transport: a Linear Response Approach within 

Time Dependent Current-Density Functional Theory

Eext(!)

3

Given the particular gauge choice, one can define an
effective electric field as Eeff

1 = ∂tAeff
1 .14 The local density

approximation expression for Eeff
1 (r, ω) is given in Ref. 30:

Eeff
1 =

1
e
∇φext

1 +
1
e
∇φHXC

1 + Edyn
1 , (4)

where φHXC
1 is the adiabatic contribution, i.e. the

linearized Hartree-exchange-correlation potential of the
equilibrium DFT, and Edyn

1 is the dynamical part of Eeff
1 ,

given by

Edyn
1 = − 1

en0
∇ζ̂, (5)

with ζ̂ the viscoelastic stress tensor.
In terms of Eeff

1 , the linear response equation becomes

j(r, ω) =
∫

σ̂KS(r, r′;ω)Eeff
1 (r′, ω)dr′, (6)

where σ̂KS is the equilibrium Kohn-Sham conductivity
tensor. In the limit ω → 0, the conductivity tensor re-
duces to

σKS
αβ(r, r′) =

1
2π

Tr
{

ĵα(r) GKS

ε+F
ĵβ(r′) GKS

ε−F

}
, (7)

where ε±F = εF ± iδ, GKS
ε is the Green’s function of the

equilibrium Kohn-Sham system,

GKS
ε = (ε−HKS)−1, (8)

and ĵ is the current operator. A convenient expression
for σ̂ is

σKS
αβ(r, r′) =

1
4π

GKS

ε+F
(r, r′)

←→
∂α

←→
∂′β GKS

ε−F
(r′, r), (9)

where we used the shorthand
←→
∂α =

−→
∂ α −

←−
∂ α. An im-

portant property of the Kohn-Sham conductivity at zero
frequency is

∑

α

∂ασKS
αβ(r, r′) =

∑

β

∂′βσKS
αβ(r, r′) = 0, (10)

which follows either from the continuity equation applied
to Eq. (6) or directly from Eq. (9).

Because of the spatial confinement, the Kohn-Sham
conductivity tensor goes rapidly to zero as one moves
laterally away from the chain+leads structure. We can
then consider the chain+leads system inside a tube that
is large enough that the conductivity tensor is practically
zero at the tube surface and beyond. The net current
flowing through the molecular chain is given by

I =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)Eeff

1 (r′), (11)

where Σ is an arbitrary transversal section and the in-
tegral over r′ is taken only inside the tube. We break
the current in Eq. (11) as I = Iad + Idyn, where Iad is

the current resulting only from the adiabatic part of the
effective electric field, Ead

1 = ∇(φext
1 +φHXC

1 ) ≡ ∇φad
1 , and

Idyn is the current resulting from the dynamical part of
Eeff

1 .
To get a clean expression for the conductance, one

needs to pull out of the integral the physical electric po-
tential drop between points at z = ±∞. This would
be straightforward if one could make the simplifying as-
sumption that the effective electric field is uniform in the
lateral direction. This is, however, a gross approximation
for the structure in Fig. 1. The difficulty is not present
in Ref. 31, which considers a different linear response
equation, involving the full many-body conductivity ten-
sor and the external field. Since one has control on the
external field, it can be considered uniform in the lat-
eral direction, greatly simplifying the issue. In our case,
Eeff

1 depends on j and no-apriori assumption can be made
about its behavior.

Let us first define a conductance for Iad and then com-
ment on the dynamical contributions. Iad is given by:

Iad =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)∇φad

1 (r′). (12)

We point out that

φad
1 (r) = φext

1 (r) +
∫

δφHXC(r)
δn(r′)

∣∣∣∣
n=n0

n1(r′)dr′, (13)

where n1 = 1
ω∇j

∣∣
ω→0

with j being the self-consistent
solution of Eq. 6. Therefore, Iad includes dynamical
effects (via n1) and it is not the same as the current
computed within the Adiabatic Time Dependent Density
Functional Theory. Now, due to Eq. (10),

σ̂KS(r, r′)∇′φad
1 (r′) = ∇′σ̂KS(r, r′)φad

1 (r′), (14)

which allows us to transform the volume integral over
r′ in Eq. (12) into a surface integral (a finite frequency
analysis that has some similarities with our approach ap-
peared in Ref. 32). First, we consider this integral over
a finite volume, between the Σ± surfaces of Fig. 1, and
then take the infinite volume limit by moving the sur-
faces at z = ±∞. An integration by parts in Eq. (12)
gives

Iad =
∫

Σ
dSα

(∫

Σ+

−
∫

Σ−

)
dS′β σKS

αβ(r, r′)φad
1 (r′). (15)

Next we deform the sections Σ± into surfaces of constant
potential,

φad
1 (r)|Σ± = φad

± . (16)

This is possible because Σ± are arbitrary sections, which
are used here only to take the infinite volume limit. Then
it follows that

Iad = φad
+

∫

Σ
dSα

∫

Σ+

dS′β σKS
αβ(r, r′) (17)

−φad
−

∫

Σ
dSα

∫

Σ−

dS′β σKS
αβ(r, r′).

Eeff
1 [j] = Eext +∇vHXC[j] + Edyn

1 [j] (1)

1



Eeff
1 [j] = Eext +∇vHXC[j] + Edyn

1 [j] (1)

∆φ∞ =
∫

γ
(Eext + EH

1 )dl (2)

g =
I

∆∞ (3)

I =
∫

Σ
j dS (4)

1

Eeff
1 [j] = Eext +∇vHXC[j] + Edyn

1 [j] (1)

∆φ∞ =
∫

γ
(Eext + EH

1 )dl (2)

g =
I

∆φ∞
(3)

I =
∫

Σ
j dS (4)

1

Eeff
1 [j] = Eext +∇vHXC[j] + Edyn

1 [j] (1)

∆φ∞ =
∫

γ
(Eext + EH

1 )dl (2)

g =
I

∆φ∞
(3)

I =
∫

Σ
j dS (4)

(ω → 0) (5)

1

3
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1 .14 The local density

approximation expression for Eeff
1 (r, ω) is given in Ref. 30:

Eeff
1 =

1
e
∇φext

1 +
1
e
∇φHXC

1 + Edyn
1 , (4)

where φHXC
1 is the adiabatic contribution, i.e. the

linearized Hartree-exchange-correlation potential of the
equilibrium DFT, and Edyn

1 is the dynamical part of Eeff
1 ,

given by

Edyn
1 = − 1

en0
∇ζ̂, (5)

with ζ̂ the viscoelastic stress tensor.
In terms of Eeff

1 , the linear response equation becomes

j(r, ω) =
∫

σ̂KS(r, r′;ω)Eeff
1 (r′, ω)dr′, (6)

where σ̂KS is the equilibrium Kohn-Sham conductivity
tensor. In the limit ω → 0, the conductivity tensor re-
duces to

σKS
αβ(r, r′) =

1
2π

Tr
{

ĵα(r) GKS

ε+F
ĵβ(r′) GKS

ε−F

}
, (7)

where ε±F = εF ± iδ, GKS
ε is the Green’s function of the

equilibrium Kohn-Sham system,

GKS
ε = (ε−HKS)−1, (8)

and ĵ is the current operator. A convenient expression
for σ̂ is

σKS
αβ(r, r′) =

1
4π

GKS

ε+F
(r, r′)

←→
∂α

←→
∂′β GKS

ε−F
(r′, r), (9)

where we used the shorthand
←→
∂α =

−→
∂ α −

←−
∂ α. An im-

portant property of the Kohn-Sham conductivity at zero
frequency is

∑

α

∂ασKS
αβ(r, r′) =

∑

β

∂′βσKS
αβ(r, r′) = 0, (10)

which follows either from the continuity equation applied
to Eq. (6) or directly from Eq. (9).

Because of the spatial confinement, the Kohn-Sham
conductivity tensor goes rapidly to zero as one moves
laterally away from the chain+leads structure. We can
then consider the chain+leads system inside a tube that
is large enough that the conductivity tensor is practically
zero at the tube surface and beyond. The net current
flowing through the molecular chain is given by

I =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)Eeff

1 (r′), (11)

where Σ is an arbitrary transversal section and the in-
tegral over r′ is taken only inside the tube. We break
the current in Eq. (11) as I = Iad + Idyn, where Iad is

the current resulting only from the adiabatic part of the
effective electric field, Ead

1 = ∇(φext
1 +φHXC

1 ) ≡ ∇φad
1 , and

Idyn is the current resulting from the dynamical part of
Eeff

1 .
To get a clean expression for the conductance, one

needs to pull out of the integral the physical electric po-
tential drop between points at z = ±∞. This would
be straightforward if one could make the simplifying as-
sumption that the effective electric field is uniform in the
lateral direction. This is, however, a gross approximation
for the structure in Fig. 1. The difficulty is not present
in Ref. 31, which considers a different linear response
equation, involving the full many-body conductivity ten-
sor and the external field. Since one has control on the
external field, it can be considered uniform in the lat-
eral direction, greatly simplifying the issue. In our case,
Eeff

1 depends on j and no-apriori assumption can be made
about its behavior.

Let us first define a conductance for Iad and then com-
ment on the dynamical contributions. Iad is given by:

Iad =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)∇φad

1 (r′). (12)

We point out that

φad
1 (r) = φext

1 (r) +
∫

δφHXC(r)
δn(r′)

∣∣∣∣
n=n0

n1(r′)dr′, (13)

where n1 = 1
ω∇j

∣∣
ω→0

with j being the self-consistent
solution of Eq. 6. Therefore, Iad includes dynamical
effects (via n1) and it is not the same as the current
computed within the Adiabatic Time Dependent Density
Functional Theory. Now, due to Eq. (10),

σ̂KS(r, r′)∇′φad
1 (r′) = ∇′σ̂KS(r, r′)φad

1 (r′), (14)

which allows us to transform the volume integral over
r′ in Eq. (12) into a surface integral (a finite frequency
analysis that has some similarities with our approach ap-
peared in Ref. 32). First, we consider this integral over
a finite volume, between the Σ± surfaces of Fig. 1, and
then take the infinite volume limit by moving the sur-
faces at z = ±∞. An integration by parts in Eq. (12)
gives

Iad =
∫

Σ
dSα

(∫

Σ+

−
∫

Σ−

)
dS′β σKS

αβ(r, r′)φad
1 (r′). (15)

Next we deform the sections Σ± into surfaces of constant
potential,

φad
1 (r)|Σ± = φad

± . (16)

This is possible because Σ± are arbitrary sections, which
are used here only to take the infinite volume limit. Then
it follows that

Iad = φad
+

∫

Σ
dSα

∫

Σ+

dS′β σKS
αβ(r, r′) (17)

−φad
−

∫

Σ
dSα

∫

Σ−

dS′β σKS
αβ(r, r′).

"

We are after the two-point conductance:

Eeff
1 [j] = Eext +∇vHXC[j] + Edyn

1 [j] (1)

∆φ∞ =
∫

γ
(Eext + EH

1 )dl (2)

1

with j the self-consistent solution of



In the limit of ω → 0 we have:

j(r) =

∫
dr′σ̂KS(r, r′)Eeff

1 (r′), (1)

with

Eeff
1 = ∇φad + Edyn, (2)

where φad is the usual adiabatic approximation. In the linear response approximation, it is

also true that: ∫
dr′σ̂KS(r, r′)Edyn

1 (r′)

=
∫

dr′
∫

dr′′σ̂KS(r, r′) δEdyn(r′)
δj(r′′) j(r′′).

(3)

With the notation:

Fαβ(r, r′) ≡ δEdyn
α (r)

δjβ(r′)
(4)

(F̂(r, r′) will be understood as a matrix with elements Fαβ(r, r′)) we have:

∫
dr′σ̂KS(r, r′)Edyn

1 (r′)

=
∫

dr′
∫

dr′′σ̂KS(r, r′)F̂(r′, r′′)j(r′′).
(5)

(matrix multiplication is understood between σ̂ and F̂ and j.) I can then take the part of

Eq. 1 that contains the dynamic field to the right and get the following equation:

∫
dr′(δ(r− r′)− [σ̂KS ∗ F̂ ](r, r′))j(r′) =

∫
dr′σ̂KS(r, r′)∇φad(r′) (6)

where I used the shorthand:

[σ̂KS ∗ F̂ ](r, r′) ≡
∫

dr′′σ̂KS(r, r′′)F̂(r′′, r′) (7)

Now I can solve for j in the last equation and get:

j(r) =

∫
dr′

∫
dr′′[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂(r′, r′′)∇φad(r′′) (8)

So far just a trivial self-consistent response equation. Now I will show that I can pull the

∆φad
∞ out of the last integral (I am closely following cond-mat/0702192 and using Fig. 1 of

that paper). For this I take the integral over r′′ in a finite volume, let me say between two

surfaces Σ+ and Σ−. At the end I will take the infinite volume limit. The main assumption

is that this limit does not depend on how I choose these two surfaces.

1

Because
∑

α

∂ασKS
αβ(r, r′) =

∑

β

∂′βσKS
αβ(r, r′) = 0, (9)

I have

σ̂KS(r′, r′′)∇′φadd(r′′) = ∇′′σ̂KS(r′, r′′)φ1(r
′′), (10)

and I can transform the integral over r′′ in a surface integral:

j(r) =

∫
dr′

(∫

Σ+

−
∫

Σ−

)
[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂KS(r′, r′′)φad(r′′)dS′′. (11)

Now I chose the Σ’s to be constant surfaces for φad. I have:

j(r) =

∫
dr′

(
φad

+

∫

Σ+

−φad
−

∫

Σ−

)
[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂KS(r′, r′′)dS′′. (12)

But once I pulled the potential out, the integrals do not depend on the surface, so I can

take them both over the same surface and then I can form ∆φad. Taking the infinite volume

limit:

j(r) = ∆φad
∞

∫
dr′

∫

Σ

[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂KS(r′, r′′)dS′′. (13)

But as argued in the cond-mat/0702192, ∆φad
∞ is precisely the physical potential drop. Now

I can calculate the total current by integrating j over a section of constant z. The final result

for conductance will be:

g ≡ I

∆φ∞
=

∫
dx⊥

∫
dx′⊥ [(1− σ̂KS ∗ F̂)−1 ∗ σ̂KS]zz(x⊥, z;x′⊥, z′) (14)

where

[(1− σ̂KS ∗ F̂)−1 ∗ σ̂KS]αβ(r, r′) =
∑

γ

∫
dr′′(1− σ̂KS ∗ F̂)−1

αγ (r, r′′)σKS
γβ(r′′, r′) (15)

2

The exact expression of g within the Linear Response  

Time Dependent Current-Density Functional Theory

Implications:

- the adiabatic vHXC gives no corrections to the ‘bare’ Kohn-Sham conductance

- the dynamical effects renormalize the Kohn-Sham states

- an exact F matrix will put the resonances at the correct energies and widen to spectral gap to the correct value



The Adiabatic Approximation

Tunneling conductance of amine linked alkyl chains

Emil Prodan1 and Roberto Car2
1Department of Physics, Yeshiva University, New York,

NY 10016 and 2Department of Chemistry and Princeton Institute fot the
Science and Technology of Materials, Princeton University, Princeton, NJ 08544

(Dated: March 7, 2008)

The tunneling transport theory developed in Phys. Rev. B 76, 115102 (2007) is applied to
molecular devices made of alkyl chains linked to gold electrodes via amine groups. Using the
analytic expression of the tunneling conductance derived in our previous work, we identify the
key physical quantities that characterize the conductance of these devices. By investigating the
transport characteristics of three devices, containing 4, 6, and 8 methyl groups, we extract the
dependence of the tunneling conductance on the chain’s length, which is an exponential decay law
in close agreement with recent experimental data.

PACS numbers:

Alkyl chains are among the simplest and first organic
molecular chains considered in molecular electronics ex-
periments. In spite of a large number of studies per-
formed in the last decade, the quest for a thorough un-
derstanding of the transport characteristics of these de-
vices is still open. Recent experiments by Venkataraman
et al.,1 in which amine groups were used as links between
molecular chains and gold electrodes, reported very pre-
cise measurements of the linear conductance g. In partic-
ular, Venkataraman and collaborators were able to mea-
sure the variation of g with the number of methyl groups,
N , with N ranging from 2 to 8. As expected for tunnel-
ing transport, the results showed an exponential decay
of g with N : g = gce−βN . The main novelty of these
experiments is an unprecedented accuracy in the deter-
mination of the pre-exponential factor gc. This opens
the way to measuring with great precision the effect of
the contacts on the transport characteristics of organic
molecular devices.2,3

Tunneling transport is an old subject, but only recently
it was formulated in a modern framework4–7 in which the
tunneling resistance, and more precisely the exponential
decay factor β, is extracted from the complex band struc-
ture of the molecular chain. This procedure extends far
beyond the limitations of simple models that approxi-
mate electron tunneling in molecular devices using square
potential barriers. The present authors contributed to
this formalism by deriving an analytic expression for the
contact conductance gc.8 This expression gives gc as an
overlap integral between three well defined and physi-
cally relevant quantities: the spectral density of the de-
vice at the Fermi level, the potential perturbation of the
metallic contacts on the molecular chain, and the evanes-
cent electron waves traversing the molecular chain. Our
theory provides novel insight on the electronic structure
mechanisms that underlie the experiments of Ref. 1. In
particular, we quantify the effect of the alignment of the
molecular levels with the Fermi level of the metal and the
effect of the chemical bonds between the link groups and
the electrodes. We find that in devices based on alkyl
chains the conductance depends less sensitively than in

devices based on benzene rings on the Fermi level align-
ment of the molecular levels. This is a consequence of
the complex band structure of the alkyl chains, which
is characterized by a large insulating gap. We also find
that the contact conductance in the amine linked alkyl
chain devices is determined to large extent by the chem-
ical contact between a single Au atom and the amine
group. Indeed the direct Au-N link contributes to more
than 60 percent of gc, the adjacent layer of Au atoms
contributes to less than 30 percent of it, and the remain-
ing Au layers contribute to the rest (less than 10 percent
of gc). We also give a precise quantitative assessment of
the lateral extent of the region that is relevant to tunnel-
ing transport.

Theoretical framework. We consider a device consist-
ing of a long but finite periodic molecular chain attached
to infinite metallic electrodes. The chain is oriented along
the z axis. We assume that a self-consistent Kohn-Sham
calculation for the entire device has been completed.
Then, the adiabatic linear conductance is given by8

g ≡
∫

dr⊥
∫

dr′⊥ σKS
zz (r⊥, z, r′⊥, z′), (1)

where σKS
zz (r, r′) is the the zz component of the Kohn-

Sham conductivity tensor. The validity of this approxi-
mation was discussed in Refs. 8, 9, and 10. As a conse-
quence of charge continuity the right hand side of Eq. 1
is independent of the location of z and z′. In our case it
is convenient to take both z and z′ in the middle of the
chain.

It is also convenient to treat the device consisting of
chain plus leads as a strictly periodic system strongly
perturbed by the leads. The Kohn-Sham potential of the
system, Veff(r), is not strictly periodic inside the chain,
because the effect of the leads can propagate deeply into
the chain. However, one can construct a strictly periodic
potential V0(r), by replicating the portion of Veff(r) that
belongs to the unit cell of the chain located in the middle
of the device. In the present case this cell contains two
molecular CH2 units. Then the total effective Hamilto-
nian H = −∇2 + Veff(r) can be written as (we use !=1,

3

Given the particular gauge choice, one can define an
effective electric field as Eeff

1 = ∂tAeff
1 .14 The local density

approximation expression for Eeff
1 (r, ω) is given in Ref. 30:

Eeff
1 =

1
e
∇φext

1 +
1
e
∇φHXC

1 + Edyn
1 , (4)

where φHXC
1 is the adiabatic contribution, i.e. the

linearized Hartree-exchange-correlation potential of the
equilibrium DFT, and Edyn

1 is the dynamical part of Eeff
1 ,

given by

Edyn
1 = − 1

en0
∇ζ̂, (5)

with ζ̂ the viscoelastic stress tensor.
In terms of Eeff

1 , the linear response equation becomes

j(r, ω) =
∫

σ̂KS(r, r′;ω)Eeff
1 (r′, ω)dr′, (6)

where σ̂KS is the equilibrium Kohn-Sham conductivity
tensor. In the limit ω → 0, the conductivity tensor re-
duces to

σKS
αβ(r, r′) =

1
2π

Tr
{

ĵα(r) GKS

ε+F
ĵβ(r′) GKS

ε−F

}
, (7)

where ε±F = εF ± iδ, GKS
ε is the Green’s function of the

equilibrium Kohn-Sham system,

GKS
ε = (ε−HKS)−1, (8)

and ĵ is the current operator. A convenient expression
for σ̂ is

σKS
αβ(r, r′) =

1
4π

GKS

ε+F
(r, r′)

←→
∂α

←→
∂′β GKS

ε−F
(r′, r), (9)

where we used the shorthand
←→
∂α =

−→
∂ α −

←−
∂ α. An im-

portant property of the Kohn-Sham conductivity at zero
frequency is

∑

α

∂ασKS
αβ(r, r′) =

∑

β

∂′βσKS
αβ(r, r′) = 0, (10)

which follows either from the continuity equation applied
to Eq. (6) or directly from Eq. (9).

Because of the spatial confinement, the Kohn-Sham
conductivity tensor goes rapidly to zero as one moves
laterally away from the chain+leads structure. We can
then consider the chain+leads system inside a tube that
is large enough that the conductivity tensor is practically
zero at the tube surface and beyond. The net current
flowing through the molecular chain is given by

I =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)Eeff

1 (r′), (11)

where Σ is an arbitrary transversal section and the in-
tegral over r′ is taken only inside the tube. We break
the current in Eq. (11) as I = Iad + Idyn, where Iad is

the current resulting only from the adiabatic part of the
effective electric field, Ead

1 = ∇(φext
1 +φHXC

1 ) ≡ ∇φad
1 , and

Idyn is the current resulting from the dynamical part of
Eeff

1 .
To get a clean expression for the conductance, one

needs to pull out of the integral the physical electric po-
tential drop between points at z = ±∞. This would
be straightforward if one could make the simplifying as-
sumption that the effective electric field is uniform in the
lateral direction. This is, however, a gross approximation
for the structure in Fig. 1. The difficulty is not present
in Ref. 31, which considers a different linear response
equation, involving the full many-body conductivity ten-
sor and the external field. Since one has control on the
external field, it can be considered uniform in the lat-
eral direction, greatly simplifying the issue. In our case,
Eeff

1 depends on j and no-apriori assumption can be made
about its behavior.

Let us first define a conductance for Iad and then com-
ment on the dynamical contributions. Iad is given by:

Iad =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)∇φad

1 (r′). (12)

We point out that

φad
1 (r) = φext

1 (r) +
∫

δφHXC(r)
δn(r′)

∣∣∣∣
n=n0

n1(r′)dr′, (13)

where n1 = 1
ω∇j

∣∣
ω→0

with j being the self-consistent
solution of Eq. 6. Therefore, Iad includes dynamical
effects (via n1) and it is not the same as the current
computed within the Adiabatic Time Dependent Density
Functional Theory. Now, due to Eq. (10),

σ̂KS(r, r′)∇′φad
1 (r′) = ∇′σ̂KS(r, r′)φad

1 (r′), (14)

which allows us to transform the volume integral over
r′ in Eq. (12) into a surface integral (a finite frequency
analysis that has some similarities with our approach ap-
peared in Ref. 32). First, we consider this integral over
a finite volume, between the Σ± surfaces of Fig. 1, and
then take the infinite volume limit by moving the sur-
faces at z = ±∞. An integration by parts in Eq. (12)
gives

Iad =
∫

Σ
dSα

(∫

Σ+

−
∫

Σ−

)
dS′β σKS

αβ(r, r′)φad
1 (r′). (15)

Next we deform the sections Σ± into surfaces of constant
potential,

φad
1 (r)|Σ± = φad

± . (16)

This is possible because Σ± are arbitrary sections, which
are used here only to take the infinite volume limit. Then
it follows that

Iad = φad
+

∫

Σ
dSα

∫

Σ+

dS′β σKS
αβ(r, r′) (17)

−φad
−

∫

Σ
dSα

∫

Σ−

dS′β σKS
αβ(r, r′).

The problem remains extremely challenging for long molecular chains:

The super-cells become extremely large

The conductances become extremely small

Because
∑

α

∂ασKS
αβ(r, r′) =

∑

β

∂′βσKS
αβ(r, r′) = 0, (9)

I have

σ̂KS(r′, r′′)∇′φadd(r′′) = ∇′′σ̂KS(r′, r′′)φ1(r
′′), (10)

and I can transform the integral over r′′ in a surface integral:

j(r) =

∫
dr′

(∫

Σ+

−
∫

Σ−

)
[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂KS(r′, r′′)φad(r′′)dS′′. (11)

Now I chose the Σ’s to be constant surfaces for φad. I have:

j(r) =

∫
dr′

(
φad

+

∫

Σ+

−φad
−

∫

Σ−

)
[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂KS(r′, r′′)dS′′. (12)

But once I pulled the potential out, the integrals do not depend on the surface, so I can

take them both over the same surface and then I can form ∆φad. Taking the infinite volume

limit:

j(r) = ∆φad
∞

∫
dr′

∫

Σ

[1− σ̂KS ∗ F̂ ]−1(r, r′)σ̂KS(r′, r′′)dS′′. (13)

But as argued in the cond-mat/0702192, ∆φad
∞ is precisely the physical potential drop. Now

I can calculate the total current by integrating j over a section of constant z. The final result

for conductance will be:

g ≡ I

∆φ∞
=

∫
dx⊥

∫
dx′⊥ [(1− σ̂KS ∗ F̂)−1 ∗ σ̂KS]zz(x⊥, z;x′⊥, z′) (14)

where

[(1− σ̂KS ∗ F̂)−1 ∗ σ̂KS]αβ(r, r′) =
∑

γ

∫
dr′′(1− σ̂KS ∗ F̂)−1

αγ (r, r′′)σKS
γβ(r′′, r′) (15)

2

Whenever #KS is small, this part can be neglected and 

(equivalent with 
Landauer formula)



Tunneling Transport

- a crude model will be to consider tunneling through a square barrier

everybody can then understand the typical tunneling behavior:

g = gc e-$N (N = number of monomers)



Tunneling Transport in Modern Formulation

Re k

Im k

- the complex band structure of the infinite chain is aligned with the spectral gap of the device

$ = 2 Im kF

- the link between the tunneling conductance and complex band structure was established 
empirically

- no expression for gc was available

7

care must be taken that the metal leads and the supercell
are large enough for the properties near the contacts to be
well converged. Finally, the formula is sufficiently simple
to allow for semi-quantitative estimates of the conduc-
tance without the need of numerical calculations.

For alkyl chains linked to gold electrodes via amine
groups, our theoretical predictions for the tunneling con-
ductance are in relatively good agreement with the recent
experimental measurements reported in Refs. 1,2. Since
our calculations used model geometries and the d elec-
trons of the Au atoms were frozen, further, more elabo-
rate calculations are needed to confirm the accuracy of
the present results. We found the level alignment in the

alkyl based devices to be less important than one could
anticipate due to the flattening of the relevant complex
band away from the gap edges. Finally, we found that the
contact conductance is determined mainly by the chemi-
cal link between a single atom of each gold electrode and
the amine group at the corresponding end of the molec-
ular chain.
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Our contribution

Start from the following decomposition:

(Nearsightedness setup: periodic potential perturbed by 
distant perturbations)

The reason for decomposition is to use new 
analytic results on periodic systems (E. P., PRB 2006)
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A lesson from a 1 dimensional problem
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Green’s function:
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1

3

Given the particular gauge choice, one can define an
effective electric field as Eeff

1 = ∂tAeff
1 .14 The local density

approximation expression for Eeff
1 (r, ω) is given in Ref. 30:

Eeff
1 =

1
e
∇φext

1 +
1
e
∇φHXC

1 + Edyn
1 , (4)

where φHXC
1 is the adiabatic contribution, i.e. the

linearized Hartree-exchange-correlation potential of the
equilibrium DFT, and Edyn

1 is the dynamical part of Eeff
1 ,

given by

Edyn
1 = − 1

en0
∇ζ̂, (5)

with ζ̂ the viscoelastic stress tensor.
In terms of Eeff

1 , the linear response equation becomes

j(r, ω) =
∫

σ̂KS(r, r′;ω)Eeff
1 (r′, ω)dr′, (6)

where σ̂KS is the equilibrium Kohn-Sham conductivity
tensor. In the limit ω → 0, the conductivity tensor re-
duces to

σKS
αβ(r, r′) =

1
2π

Tr
{

ĵα(r) GKS

ε+F
ĵβ(r′) GKS

ε−F

}
, (7)

where ε±F = εF ± iδ, GKS
ε is the Green’s function of the

equilibrium Kohn-Sham system,

GKS
ε = (ε−HKS)−1, (8)

and ĵ is the current operator. A convenient expression
for σ̂ is

σKS
αβ(r, r′) =

1
4π

GKS

ε+F
(r, r′)

←→
∂α

←→
∂′β GKS

ε−F
(r′, r), (9)

where we used the shorthand
←→
∂α =

−→
∂ α −

←−
∂ α. An im-

portant property of the Kohn-Sham conductivity at zero
frequency is

∑

α

∂ασKS
αβ(r, r′) =

∑

β

∂′βσKS
αβ(r, r′) = 0, (10)

which follows either from the continuity equation applied
to Eq. (6) or directly from Eq. (9).

Because of the spatial confinement, the Kohn-Sham
conductivity tensor goes rapidly to zero as one moves
laterally away from the chain+leads structure. We can
then consider the chain+leads system inside a tube that
is large enough that the conductivity tensor is practically
zero at the tube surface and beyond. The net current
flowing through the molecular chain is given by

I =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)Eeff

1 (r′), (11)

where Σ is an arbitrary transversal section and the in-
tegral over r′ is taken only inside the tube. We break
the current in Eq. (11) as I = Iad + Idyn, where Iad is

the current resulting only from the adiabatic part of the
effective electric field, Ead

1 = ∇(φext
1 +φHXC

1 ) ≡ ∇φad
1 , and

Idyn is the current resulting from the dynamical part of
Eeff

1 .
To get a clean expression for the conductance, one

needs to pull out of the integral the physical electric po-
tential drop between points at z = ±∞. This would
be straightforward if one could make the simplifying as-
sumption that the effective electric field is uniform in the
lateral direction. This is, however, a gross approximation
for the structure in Fig. 1. The difficulty is not present
in Ref. 31, which considers a different linear response
equation, involving the full many-body conductivity ten-
sor and the external field. Since one has control on the
external field, it can be considered uniform in the lat-
eral direction, greatly simplifying the issue. In our case,
Eeff

1 depends on j and no-apriori assumption can be made
about its behavior.

Let us first define a conductance for Iad and then com-
ment on the dynamical contributions. Iad is given by:

Iad =
∫

Σ
dS

∫
dr′ σ̂KS(r, r′)∇φad

1 (r′). (12)

We point out that

φad
1 (r) = φext

1 (r) +
∫

δφHXC(r)
δn(r′)

∣∣∣∣
n=n0

n1(r′)dr′, (13)

where n1 = 1
ω∇j

∣∣
ω→0

with j being the self-consistent
solution of Eq. 6. Therefore, Iad includes dynamical
effects (via n1) and it is not the same as the current
computed within the Adiabatic Time Dependent Density
Functional Theory. Now, due to Eq. (10),

σ̂KS(r, r′)∇′φad
1 (r′) = ∇′σ̂KS(r, r′)φad

1 (r′), (14)

which allows us to transform the volume integral over
r′ in Eq. (12) into a surface integral (a finite frequency
analysis that has some similarities with our approach ap-
peared in Ref. 32). First, we consider this integral over
a finite volume, between the Σ± surfaces of Fig. 1, and
then take the infinite volume limit by moving the sur-
faces at z = ±∞. An integration by parts in Eq. (12)
gives

Iad =
∫

Σ
dSα

(∫

Σ+

−
∫

Σ−

)
dS′β σKS

αβ(r, r′)φad
1 (r′). (15)

Next we deform the sections Σ± into surfaces of constant
potential,

φad
1 (r)|Σ± = φad

± . (16)

This is possible because Σ± are arbitrary sections, which
are used here only to take the infinite volume limit. Then
it follows that

Iad = φad
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dS′β σKS
αβ(r, r′) (17)

−φad
−

∫

Σ
dSα
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dS′β σKS
αβ(r, r′).

Remember: we need

(not very useful)

In 1D, there is an alternative 
expression
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The expression for the Green’s function is so simple that one can 
compute g analytically!!

7

must be smaller than the separation between adjacent
resonances.

A consequence of Eq. (42) is that g0 oscillates with
the chain length. Such behavior was reported previously,
both experimentally and theoretically.21–26 According to
Eq. (42), the wavelength of the oscillation is half the
Fermi wavelength of the chain. Chains of monovalent
atoms, for example, are half filled and g0 is predicted to
be different when the chain contains an odd or an even
number of atoms:

g0(L) =
1
π

[1− |RL(kF )|2][1− |RR(kF )|2]
|1− eiπNRL(kF )RR(kF )|2 . (44)

This is precisely what has been observed. Interestingly,
several independent numerical simulations showed that,
for alkali-metal chains,24,25 g0 is larger for an odd num-
ber of atoms while for noble-metal chains the opposite
occurs.24,41 The behavior for noble-metal chains is still
under debate since existing experiments do not seem to
confirm the prediction,23 and two new studies finds that
alternative scenarios can happen.26,42

On the basis of expression (42), we can easily under-
stand these phenomena. In the case of alkali chains, the
projected density of states on the chain (PDOS) displays
sharp resonances.24 The PDOS corresponding to each
resonance integrates to 2. Thus, assuming no or little
charge transfer at the contacts, for an odd number of
atoms, the Fermi level sits on top of a resonance while
for an even number of atoms the Fermi level sits between
two resonances. According to our discussion of resonant
transport, when the Fermi level sits on top of the reson-
cance, the denominator in Eq. (44) is small, leading to a
large value of g0. In fact, if the left and right reflection
coefficients are the same, g0 takes the maximum allowed
value of 1/π (a.u.), no matter how bad the contacts are.
This effect was previously discussed in Ref. 43 in a much
broader context. Now assume that we add one more atom
to the chain so that we have an even number of atoms.
The Fermi level moves between two resonances. The re-
flection coefficients have slow energy dependence and do
not change much whereas the phase factor in front of
them changes sign. The conclusion is that now the de-
nominator of Eq. (44) takes a maximum value, leading to
a minimum value of g0. If there is a large charge transfer
at the contacts, the above behavior may break down.21

Chains of noble-metal atoms are more jellium like.24
For good contacts, we expect the reflection coefficients to
be small and real, in which case Eq. (44) predicts that g0

is larger for an even number of atoms. This is the behav-
ior found in several numerical simulations.24,41 However,
the phase of the reflection coefficients may be quite sensi-
tive to the details of the contacts.26,42,44 This can explain
the different behavior observed in the experiments. We
stop here the analysis of the oscillations, but we point
the reader to Ref. 25 for a comprehensive discussion of
the existing literature on the subject.

Insulating chains. In this case, the Fermi energy falls
within an energy gap. Compared to the metallic case,

we have the following differences: k±F → kF as δ → 0,
but kF is now complex as shown in panel (b’) of Fig. 2.
The reflection coefficients have branch cuts along the red
lines in Fig. 2. Consequently, RL/R(k+

F ) are different from
RL/R(k−F ).40 Thus, when taking the limit for δ → 0 in
Eq. (36), we obtain:

ψ>
ε±F

(x) = ψkF (x) +RR(k±F )ψ−kF (x)

ψ<
ε±F

(x) = ψ−kF (x) +RL(k±F )ψkF (x).
(45)

Then:

W (ψ>
ε+F

, ψ>
ε−F

) = [RR(k−F )−RR(k+
F )]W0

W (ψ<
ε+F

, ψ<
ε−F

) = [RL(k+
F )−RL(k−F )]W0

(46)

and

W (ψ<
ε+F

, ψ>
ε+F

) = −[1−RL(k+
F )RR(k+

F )]W0

W (ψ<
ε−F

, ψ>
ε−F

) = −[1−RL(k−F )RR(k−F )]W0.
(47)

This leads to

g0 =
4
π

Im[RL(k+
F )]Im[RR(k+

F )]
|1−RL(k+

F )RR(k+
F )|2

. (48)

Rescaling the reflection coefficients as in Eq. (41) so that
they become independent of L, we finally obtain

g0(L) =
4
π

Im[RL(k+
F )]Im[RR(k+

F )]e−2βL

|1− e−2βLRL(k+
F )RR(k+

F )|2
, (49)

with β=Im(kF ). The above expression shows that the
behavior of g0 as a function of L is universal, as the
above results apply to arbitrary periodic chains and lead
potentials.

In the limit of very long chains, the left and right con-
tacts decouple and the adiabatic conductance becomes

g0(L) =
4
π

Im[RL(k+
F )]Im[RR(k+

F )]e−2βL. (50)

The reflection coefficients are directly proportional to the
local density of states ρL/R

εF
at the contact edges and at

the Fermi energy. Indeed, according to Ref. 40,

Im[RL/R(k+
F )] =

dεF /dβ

ψkF (0)2
ρεF (x)|x=∓L/2, (51)

which allows us to rewrite the adiabatic conductance as

g0(L) =
4
π

[
dεF /dβ

ψkF (0)2

]2

ρL
εF

ρR
εF

e−2βL. (52)

In the next section, the above expression will be general-
ized to linear molecular chains in 3D.

Unfortunately, the textbooks tell that no such expression for the Green’s 
function exists in higher dimensions!

We found the exception, which is the case of periodic potentials!



Green’s function from the Riemann surface of the bands

Globally defined %&, P& on a Riemann surface describe the whole band structure (&=eikb).

If we evaluate %&  along the circle we 

obtain the usual energy bands

The Riemann surface of the bands was discovered by Walter Kohn in 1959.

%&



! = the point on the Riemann surface so that:

(eigenfunction expansion)

But the contour " can be deformed to a point:
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The existence of the Riemann structure gives the simple expression for 
the Green’s function!



Molecular wires

Existence and characterization of the Riemann surface for molecular wires was given 
in E. Prodan, PRB 2006
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(H − E)ψ> = 0,with the boundary condition to the right (12)

G0
ε(r, r

′) =
∫

Γ

ψ1/λ(r<)ψλ(r′>)
ε− ε(λ)

dλ

2πiλ
(13)

1

Eeff
1 [j] = Eext +∇vHXC[j] + Edyn

1 [j] (1)

∆φ∞ =
∫

γ
(Eext + EH

1 )dl (2)

g =
I

∆φ∞
(3)

I =
∫

Σ
j dS (4)

(ω → 0) (5)

HKS = −∇2 + V0 + ∆VL + ∆VR (6)

Veff (7)

H = − d2

dx2
+ V (x) (8)

GE(x, x′) = (H − E)−1 =
∑

n

ψn(x)ψ∗n(x′)
E − εn

(9)

GE(x, x′) =
ψ<(x<)ψ>(x>)

W (ψ<, ψ>)
(10)

(H − E)ψ< = 0,with the boundary condition to the left (11)

(H − E)ψ> = 0,with the boundary condition to the right (12)

G0
ε(r, r

′) =
∫

Γ

ψ1/λ(r<)ψλ(r′>)
ε− ε(λ)

dλ

2πiλ
(13)

G0
ε(r, r

′) =
∑

j

ψ1/λj
(r<)ψλj (r′>)

λj∂λε(λj)
(14)

ε = ε(λj) (15)

1
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Let us consider, for instance, the third term in Eq. (73):

T 3
LR = ∆VLG0

ε∆VLG0
ε∆VLG0

ε∆VR

+∆VLG0
ε∆VLG0

ε∆VRG0
ε∆VR

+∆VLG0
ε∆VRG0

ε∆VRG0
ε∆VR

+∆VLG0
ε∆VRG0

ε∆VLG0
ε∆VR.

(74)

In the first three terms, G0
ε is sandwiched between a ∆VL

and a ∆VR only once, whereas all the three G0
ε that ap-

pear in the last term are sandwiched between a ∆VL and
∆VR. As a consequence, the ratio of the fourth term and
anyone of the first three terms is of order o(e−2βminL).
By applying this argument to all the terms in Eq. (73)
we obtain:

Tn
LR =

n∑
k=1

∆VLG
0
ε . . . ∆VL︸ ︷︷ ︸ G0

ε ∆VR . . . G0
ε∆VR︸ ︷︷ ︸

k n + 1− k
(75)

plus terms o(e−2βminL) times smaller.
Next, we consider the expansion of TLG0

εTR in powers
of G0

ε . By applying the same arguments that led us to
Eq. (75), we find that the n-th term in the exapnsion
is equal to the right hand side of Eq. (75) plus terms
o(e−2βminL) times smaller. This proves Eq. (72). Taking
the matrix elements of this equation and using the rep-
resentation of the Green’s function G0

ε given in Eq. (56)
gives:

T ij
LR = [1 + o(e−2βminL)]

∑

m

T im
L Tmj

R

i∂kεkm

. (76)

Similar conclusions holds for T ij
RL and for the tilde coun-

terparts.
As shown below in Eqs. (80) and (82), the matrix ele-

ments T ij
L and T ij

R are exponentially small for long chains.
Thus, if we retain only the leading terms, Eq. (70) be-
comes:

g0 =
1
π

∑

i,j

(T ij
L − T̃ ij

L )(T ij
R − T̃ ij

R )
∂kεki∂kεkj

. (77)

This is the exact asymptotic form of g0. The terms that
we have neglected are o(e−2βminL) times smaller.

Finally, we show that the matrix elements of T have
simple and intuitive expressions. For instance, the first
factor in the numerator on the right hand side of Eq. (77)
is:

T ij
L − T̃ ij

L = 〈ψ−ki |∆VL(Gε+F
−Gε−F

)∆VL|ψ−kj 〉. (78)

This can be expressed in terms of the spectral operator
ρεF :

ρεF =
1

2πi

(
Gε+F

−Gε−F

)
. (79)

The diagonal elements, ρεF (x, x), of the spectral opera-
tor give the local density of states. By writing ψk(r) =
uk(r)eikz, with uk periodic, uk(r + bez) = uk(r), we ob-
tain

T ij
L − T̃ ij

L = e
i
2 (ki+kj)LΘij

L (80)

with

Θij
L = 2πi

∫
dr

∫
dr′e−i(kiz+kjz′)×

u−ki(r)∆VL(r)ρεF (r, r′)∆VL(r′)u−ki(r′),
(81)

where r and r′ are measured from the left end of the
chain, z = −L/2. Similarly

T ij
R − T̃ ij

R = e
i
2 (ki+kj)LΘij

R (82)

with

Θij
R = 2πi

∫
dr

∫
dr′ei(kiz+kjz′)×

uki(r)∆VR(r)ρεF (r, r′)∆VR(r′)uki(r′),
(83)

where r and r′ are measured from the right end of the
chain, z = L/2. In the limit L → ∞, the Θ coeffi-
cients become independent of L. By inserting Eqs. (80)
and (82) into Eq. (77), we obtain the following simple
asymptotic form for g0:

g0(L) =
1
π

∑

i,j

Θij
L Θij

R

∂kεki∂kεkj

ei(ki+kj)L. (84)

We notice that the integrands in Eqs. (81) and (83) con-
tain the following terms:

e−i(kiz+kjz′)∆VL(r)∆VL(r′)

ei(kiz+kjz′)∆VR(r)∆VR(r′),
(85)

which are highly localized near the left and the right con-
tacts, respectively. This shows that the conductance of
the molecular device is only determined by the properties
of the chain and of the contacts.

Strictly speaking, the asymptotic form of g0(L) is de-
termined by the wavenumber k such that Im(k) = βmin.
However, for complex molecular chains such as carbon
nanotubes,18 there may be many wavenumbers with sim-
ilar imaginary parts, especially when the valence and the
conduction bands are highly degenerate.

Metallic chains. As in the insulating case, let us con-
sider the infinite sequence of wavenumbers {ki} for which
εki = εF . Since the Fermi energy falls within allowed
bands, some of the ki are real. We can restrict ourselves
to the latter, because complex wavenumbers lead to ex-
ponentially small contributions to g0 in the limit L →∞.

In order to compute the conductivity tensor in Eq. (9)
we need both Gε+F

and Gε−F
. When going from ε+F to ε−F ,

ki becomes −ki. Thus:

T ij → T̃ ij = (T ij)∗, ∂kεki → −∂kεki . (86)

Localized
at the contacts

#(k
i
) = #F

Tunneling Conductance

E. Prodan  & R. Car, PRB 2007
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Θij

R = 2πi
∫

dr
∫

dr′×

∆VR(r)ei(kiz+kjz′)∆VR(r′)×

uki(r)ρεF (r, r′)uki(r′),

(100)

g(L) =
1
π

ΘLΘR

(∂kεk0)2
e−βL (101)

β = 2Im(k0) (102)

ΘL = 2πi
∫

dr
∫

dr′×

∆VL(r)ψ−k0(r)ρεF +eΦ(r, r′;T )∆VL(r′)ψ−k0(r′),
(103)

ΘR = 2πi
∫

dr
∫

dr′×

∆VR(r)ψk0(r)ρεF +eΦ(r, r′;T )∆VR(r′)ψk0(r′),
(104)

g(L) =
1
π

Θ2
maj + Θ2

min

(∂kεk0)2
e−βL (105)

g(L) =
1
π

2ΘmajΘmin

(∂kεk0)2
e−βL (106)

GP −GA

GP + GA
=

[
Θmaj −Θmin

Θmaj + Θmin

]2

(107)

(
−1

2
∆ + V0(x, y, z)

)
ψn,λ(x, y, z) = En,λψn,λ(x, y, z) (108)

V0(x, y, z + b) = V0(x, y, z) (109)

ψn,λ(x, y, z + b) = λψn,λ(x, y, z), (λ = eikb) (110)

3 Bloch Functions

Ψ(k) =
∫

D

ρ(ζ) dζ

k − ζ
(111)

Ũ : L2(Ω× (−∞,∞))→
⊕

k∈[−π/b,π/b]

L2(Ω× [0, b]) (112)

U : L2(Ω× (−∞,∞))→
⊕

|λ|=1

L2(Ω× [0, b]) (113)

UHU−1 =
⊕

|λ|=1

Hλ (114)

7

2

FIG. 1: Atomic configurations of the molecular devices. Under each atomic configuration, the figure shows iso-surfaces of the
self-consistent electron density (corresponding to a value which is 1% of the maximum electron density), of the self-consistent
Kohn-Sham potential (corresponding to a value which is 5% of the maximum potential) and the planar average (over xy) of
the local density of states, shown as a density plot with energy (in eV) on the vertical axis and z coordinate (in a.u.) on the
horizontal axis.

derive a non-perturbative expression for the total Green’s
function, which can be used to calculate the Kohn-Sham
conductivity tensor needed in Eq. 1. In particular, in the
limit of long chains, this approach leads to the following
asymptotic expression:9

g =
1
π

ΘLΘR

(∂kεk)2
e2ikL. (3)

Here k is the complex wavenumber of the evanescent
Bloch solution ψk(r) of the periodic Hamiltonian H0 hav-
ing minimum imaginary wavenumber and energy εk equal
to εF , the Fermi level of the leads. The tunneling coef-
ficient β is related to k via β = 2Im[k]b, where b is the
lattice constant of the chain. The contact conductance gc

is the pre-exponential factor in Eq. 3. The ΘL coefficient
is defined by:

ΘL = 2πi
∫

dr
∫

dr′e−ik(z+z′)×

u−k(r)∆VL(r)ρεF (r, r′)∆VL(r′)u−k(r′),
(4)

where r and r′ are measured from the left end of the
chain. Similarly

ΘR = 2πi
∫

dr
∫

dr′eik(z+z′)×

uk(r)∆VR(r)ρεF (r, r′)∆VR(r′)uk(r′),
(5)

where r and r′ are measured from the right end of the
chain. In the above expressions, the evanescent waves
were factorized into exponentially and periodically vary-
ing parts, ψk(r) = eikzuk(r). ρε is the spectral operator,
ρε = 1

2πi (Gε+iδ−Gε−iδ). Its diagonal part gives the local
density of states ρε(x, y, z) of the device. The denomi-
nator in Eq. 3 is the derivative with respect to k of the
band energy εk, evaluated at εF .

Eq. 3 is an asymptotic expression, valid in the limit
of long chains. When the chains are finite, the conduc-
tance takes the form g=gce−βN [1+O(e−βN )].9 Taking for
β the value found in the present calculations, the expo-
nential factor e−βN is equal to 0.04, 0.007, and 0.001,
respectively, for N=4, 6, and 8. Thus, already chains of
4 monomers are well within the asymptotic regime, a re-
sult in good agreement with the experimental findings of
Ref. 1.

Geometrical models and electronic structure. We stud-
ied three devices containing 4, 6 and 8 methyl groups,
linked to gold electrodes via amine groups. In the fol-
lowing, these three devices will be referred to as (a), (b)
and (c), respectively. The corresponding atomic config-
urations are shown in the first row of Fig. 1. The alkyl
chain has the same geometry as in Refs. 6 and 14. The
amine groups at the two ends of the chain simply replace
a methyl group, and we neglect the small difference in
length between the NH and the CH bond. Indicating by
A, B, and C the stacking planes in the (111) direction
of fcc gold, a device consisting of an alkyl chain and two
gold leads is represented schematically by:

BCBCBA-NH2-(CH2)N -NH2-ACBCBC (6)

As shown in Fig. 1 only one Au atom of the A plane is in-
cluded, whereas each of the B and C planes is represented
by three Au atoms. The Au-N bond length is fixed to
2.4 A, and the Au-N-C angle is set to 109.5o. The two
leads are slightly tilted relative to the alkyl chain in or-
der to enforce the above geometrical constraints and to
permit periodic boundary conditions along the z direc-
tion between the left and right ends of the device. Our
calculations were performed on periodic supercells con-
taining the alkyl chain and the Au wires that represent
the leads in Fig. 1. The supercell dimensions (in a.u.) for

Θij
R = 2πi

∫
dr

∫
dr′×
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Ψ(k) =
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FIG. 8: (a) Molecular device (c). (b) An iso-surface plot
of |ΨL/R(r)|, corresponding to 2% of the maximum value of
|ΨL/R(r)|. (c) Planar average of |ΨL/R(r)| (with respect to
the xy coordinates). (d) The contact conductance gc using
|ΨL/R(r)| truncated to zero outside an interval [−z0, z0], as
function of z0. The horizontal axes of the graphs are aligned.

energies εi:

ρε(r, r′) =
∑

i

φ∗i (r)φi(r′)δ(ε− εi), (8)

with either ε = ε6k or ε = ε7k.
The Dirac-delta function was approximated by δ(x) =

x/(x2 + δ2
0), with δ0=0.1 eV. Convergence with the num-

ber of Au layers in the leads was checked by repeating
the calculations (including the self-consistent part) for
devices with 2 up to a maximum of 5 Au layers in each
electrode. We found that the results are already well
converged when the leads contain only 3 Au layers.

Discussion. It is instructive to plot the physical quan-
tities that enter the definition of the Θ coefficients (see
Eqs. 4 and 5). A plot of ∆V is shown in Fig. 6 and a plot
of the local density of states (i.e. the diagonal part of the
spectral operator) is given in Fig. 1. Fig. 7 shows a plot
of the evanescent Bloch solutions of the periodic Hamil-
tonian with potential V0, evaluated at the Fermi level,
for device (c). These functions are a property of the pe-
riodic Hamiltonian only, but their spatial decay is fixed
by the β coefficient, which depends on the Fermi level
alignment as discussed earlier. The contact conductance
gc depends on the overlap of these evanescent functions
with other physical quantities, and a plot like the one in
Fig. 7 allows us to assess quantitatively the lateral size of
the contact region that is relevant to tunneling transport.
The iso-surfaces in Fig. 7 indicate that at least 95% of the
evanescent Bloch functions are completely contained in a
spatial region narrower than the lateral size of the gold
wires that we use in our calculation. This does not imply
that the supercell can be reduced to the small volume
in which the evanescent waves have non negligible am-
plitude. This is so because the other two quantities that
enter the definition of the contact conductance, namely
the spectral kernel and ∆V , are sensitive to the size of
the supercell. The supercell’s size should be varied until
the spectral kernel and ∆V are well converged inside the
spatial region limited by the evanescent waves. For the

contact geometry adopted in this paper, we have verified
that this condition is well satisfied in our calculations.

A crucial factor in our transport calculation is the fact
that the overlap between the evanescent Bloch function
ψ∓k(r) and ∆VL/R,

ΨL/R(r) = ψ∓k(r)∆VL/R(r) (9)

is exponentially localized at the left/right contacts. As a
consequence the spectral operator in Eq. 8 is only needed
in a region near the contacts. A plot of ΨL/R(r) for device
(c) is shown in Fig. 8. This plot allows us to understand
how the different Au layers contribute to the contact con-
ductance gc. From panel (c) of Fig. 8 we extract that
about 62% of ΨL/R comes from the region occupied by
the first Au atom of the leads, i.e. the contact Au atom,
27% comes from the adjacent Au layer and 10 % comes
from the remaining layers. Now, let us limit the domain
of integration in the definition of the ΘL/R coefficients to
a finite interval [−z0, z0]. The values of gc obtained by
varying the truncation length z0 are reported in Fig. 8d.
Due to inversion symmetry, we can drop the index L/R.
The truncation can also be viewed as if it were caused by
replacing Ψ with a Ψ′ which is equal to Ψ inside and is
equal to zero outside the interval [−z0, z0]. If the inter-
val is large enough so that the difference δΨ = Ψ−Ψ′ is
small, the truncation error in gc is given by:

δg =
∫

δg

δΨ(r)
δΨ(r)dr < max

∣∣∣∣
δg

δΨ(r)

∣∣∣∣
∫

|z|>z0

|Ψ(r)|dr.

This shows that the plot of ΨL/R(r) gives a measure of the
convergence of gc to its exact value. From the numbers
given above, we infer that the contributions to gc after
the third Au layer are less than 10%, an estimate that is
confirmed by the direct calculation shown in Fig. 8d.

In conclusion, we have presented a novel and efficient
approach to calculate the tunneling conductance. This
scheme opens the way for first principles calculations
of the conductance in devices made of long molecular
chains, like e.g. the alkyl chains in the experiments of
Ref. 27. Our approach gives a rigorous explanation of
the exponential dependence of the conductance on the
molecular length, and associates the exponential decay
constant to a precise property of the complex band struc-
ture of a suitably defined periodic molecular chain. More-
over the formula for the contact conductance, i.e. the
pre-exponential factor in the conductance, is relatively
simple and involves overlap integrals between the evanes-
cent waves of the periodic molecular chain and physical
quantities that can be easily extracted from an equilib-
rium self-consistent calculation for the full device, includ-
ing the electrodes and the molecular chain that connects
them. Since only a region near the contacts is important,
a conductance calculation can be performed on a finite
model of the device, which can be conveniently done by
adopting a supercell geometry like in standard surface
band structure calculations. As with these calculations,
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FIG. 8: (a) Molecular device (c). (b) An iso-surface plot
of |ΨL/R(r)|, corresponding to 2% of the maximum value of
|ΨL/R(r)|. (c) Planar average of |ΨL/R(r)| (with respect to
the xy coordinates). (d) The contact conductance gc using
|ΨL/R(r)| truncated to zero outside an interval [−z0, z0], as
function of z0. The horizontal axes of the graphs are aligned.

energies εi:

ρε(r, r′) =
∑

i

φ∗i (r)φi(r′)δ(ε− εi), (8)

with either ε = ε6k or ε = ε7k.
The Dirac-delta function was approximated by δ(x) =

x/(x2 + δ2
0), with δ0=0.1 eV. Convergence with the num-

ber of Au layers in the leads was checked by repeating
the calculations (including the self-consistent part) for
devices with 2 up to a maximum of 5 Au layers in each
electrode. We found that the results are already well
converged when the leads contain only 3 Au layers.

Discussion. It is instructive to plot the physical quan-
tities that enter the definition of the Θ coefficients (see
Eqs. 4 and 5). A plot of ∆V is shown in Fig. 6 and a plot
of the local density of states (i.e. the diagonal part of the
spectral operator) is given in Fig. 1. Fig. 7 shows a plot
of the evanescent Bloch solutions of the periodic Hamil-
tonian with potential V0, evaluated at the Fermi level,
for device (c). These functions are a property of the pe-
riodic Hamiltonian only, but their spatial decay is fixed
by the β coefficient, which depends on the Fermi level
alignment as discussed earlier. The contact conductance
gc depends on the overlap of these evanescent functions
with other physical quantities, and a plot like the one in
Fig. 7 allows us to assess quantitatively the lateral size of
the contact region that is relevant to tunneling transport.
The iso-surfaces in Fig. 7 indicate that at least 95% of the
evanescent Bloch functions are completely contained in a
spatial region narrower than the lateral size of the gold
wires that we use in our calculation. This does not imply
that the supercell can be reduced to the small volume
in which the evanescent waves have non negligible am-
plitude. This is so because the other two quantities that
enter the definition of the contact conductance, namely
the spectral kernel and ∆V , are sensitive to the size of
the supercell. The supercell’s size should be varied until
the spectral kernel and ∆V are well converged inside the
spatial region limited by the evanescent waves. For the

contact geometry adopted in this paper, we have verified
that this condition is well satisfied in our calculations.

A crucial factor in our transport calculation is the fact
that the overlap between the evanescent Bloch function
ψ∓k(r) and ∆VL/R,

ΨL/R(r) = ψ∓k(r)∆VL/R(r) (9)

is exponentially localized at the left/right contacts. As a
consequence the spectral operator in Eq. 8 is only needed
in a region near the contacts. A plot of ΨL/R(r) for device
(c) is shown in Fig. 8. This plot allows us to understand
how the different Au layers contribute to the contact con-
ductance gc. From panel (c) of Fig. 8 we extract that
about 62% of ΨL/R comes from the region occupied by
the first Au atom of the leads, i.e. the contact Au atom,
27% comes from the adjacent Au layer and 10 % comes
from the remaining layers. Now, let us limit the domain
of integration in the definition of the ΘL/R coefficients to
a finite interval [−z0, z0]. The values of gc obtained by
varying the truncation length z0 are reported in Fig. 8d.
Due to inversion symmetry, we can drop the index L/R.
The truncation can also be viewed as if it were caused by
replacing Ψ with a Ψ′ which is equal to Ψ inside and is
equal to zero outside the interval [−z0, z0]. If the inter-
val is large enough so that the difference δΨ = Ψ−Ψ′ is
small, the truncation error in gc is given by:

δg =
∫

δg

δΨ(r)
δΨ(r)dr < max

∣∣∣∣
δg

δΨ(r)

∣∣∣∣
∫

|z|>z0

|Ψ(r)|dr.

This shows that the plot of ΨL/R(r) gives a measure of the
convergence of gc to its exact value. From the numbers
given above, we infer that the contributions to gc after
the third Au layer are less than 10%, an estimate that is
confirmed by the direct calculation shown in Fig. 8d.

In conclusion, we have presented a novel and efficient
approach to calculate the tunneling conductance. This
scheme opens the way for first principles calculations
of the conductance in devices made of long molecular
chains, like e.g. the alkyl chains in the experiments of
Ref. 27. Our approach gives a rigorous explanation of
the exponential dependence of the conductance on the
molecular length, and associates the exponential decay
constant to a precise property of the complex band struc-
ture of a suitably defined periodic molecular chain. More-
over the formula for the contact conductance, i.e. the
pre-exponential factor in the conductance, is relatively
simple and involves overlap integrals between the evanes-
cent waves of the periodic molecular chain and physical
quantities that can be easily extracted from an equilib-
rium self-consistent calculation for the full device, includ-
ing the electrodes and the molecular chain that connects
them. Since only a region near the contacts is important,
a conductance calculation can be performed on a finite
model of the device, which can be conveniently done by
adopting a supercell geometry like in standard surface
band structure calculations. As with these calculations,



Conclusions

- a newly formulated tunneling transport theory give a rigorous way to 
compute beta and the contact conductance

- the analytic expression of the contact conductance give insight into 
the transport characteristics of the devices

- we hope that the formalism will become a useful tool for device 
design



Further directions

Generalization to the spin polarized case:
Tunneling Magneto-Resistance
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