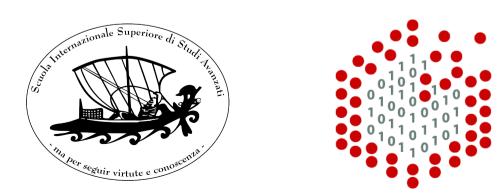
Ab initio pseudopotential calculations of the orbital magnetization

Davide Ceresoli

Present address:

Department of Materials Science and Engineering

MIT



ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Acknowledgments

Francesco Mauri

Ari Seitsonen

Institut de Minéralogie et Physique des Milieux Condensés (IMPMC) Université Pierre et Marie Curie, Paris, France

Uwe Gerstmann

IMPMC and University of Paderborn, Paderborn, Germany

Outline

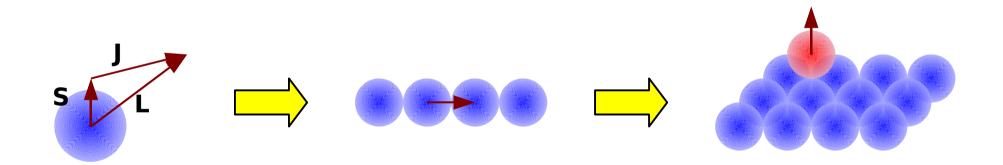
- Modern Theory of the orbital magnetization
- Application: EPR g-tensor in molecules and solids
- Orbital magnetization of Fe, Co and Ni
- Conclusions

Orbital magnetization

Two contributions to the total magnetization

$$\mathbf{M}_{\mathrm{tot}} = \mathbf{M}_{\mathrm{spin}} + \mathbf{M}_{\mathrm{orb}}$$

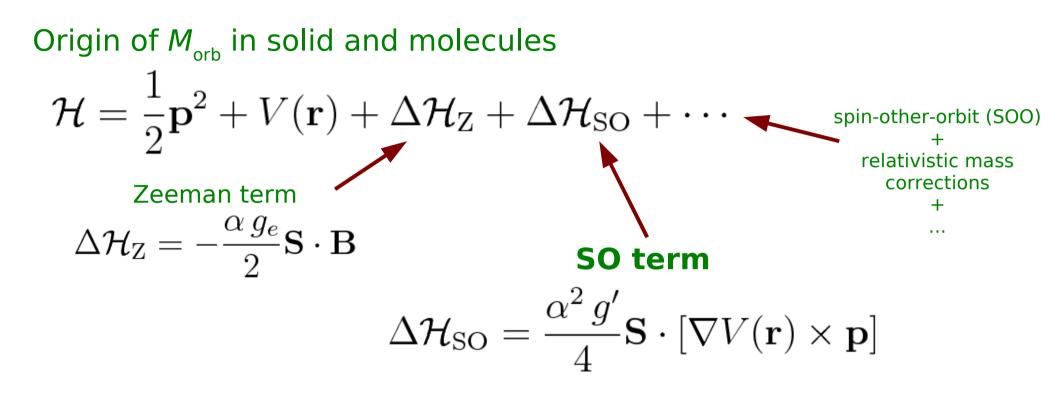
• Orbital magnetization usually small in solids ...



• ... but *unquenched* in nanostructures

Spin-Orbit interaction

Spin-orbit



- molecule radicals
- paramagnetic defects in solids
- ferromagnetic metals

Schrekenbach and Ziegler, J. Phys. Chem. A 101, 3388 (1997)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

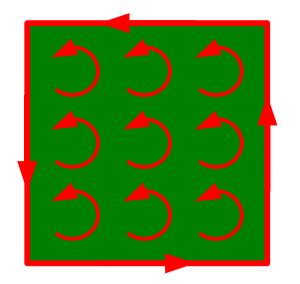
Atomic units,

 $q' = 2(q_e - 1)$

 $\alpha = 1/c$

Definition

$$\mathbf{M}_{\rm orb} = \frac{1}{2c} \int \mathbf{r} \times \boldsymbol{j}(\mathbf{r}) \, d\mathbf{r}$$



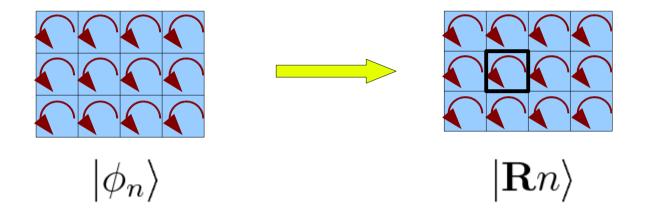
surf

- Well defined in finite systems!
- Problems with periodic systems
 - position operator ${\bf r}$ incompatible with PBCs
 - surface currents

1990's: Modern Theory of Polarization

Periodic systems

Pass to Wannier functions

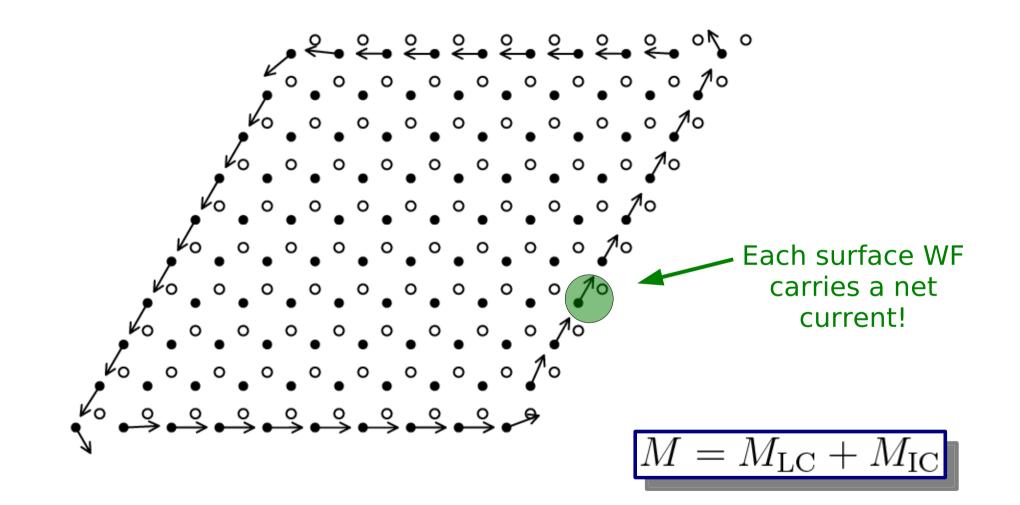


Evaluate "Local Circulation" of the Wannier orbital

$$M_{\rm LC} = \frac{1}{2c} \sum_{n} \langle \mathbf{R}n | \mathbf{r} \times \mathbf{v} | \mathbf{R}n \rangle$$

What about surfaces?

Surface WFs



Thonhauser, Ceresoli, Vanderbilt, Resta, PRL 95, 137205 (2005) Ceresoli, Thohauser, Vanderbilt, Resta, PRB 74, 024408 (2006)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Periodic systems

$$\mathbf{M}_{\text{orb}} = \frac{\alpha}{2} \operatorname{Im} \sum_{n\mathbf{k}} f_{n\mathbf{k}} \left\langle \partial_{\mathbf{k}} u_{n\mathbf{k}} \right| \times \left(H_{\mathbf{k}} + E_{n\mathbf{k}} - 2\mu \right) \left| \partial_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle$$

- Derived independently by two groups (2005-2006) Ceresoli, Resta, Thonhauser, Vanderbilt Xiao, Yao, Fang, Shi, Vignale, Niu
- Valid for insulators and metals
- Easy to implement in all-electron (AE) electronic structure codes
- Extra terms for pseudopotentials (PS)

$$\mathbf{M}_{\mathrm{orb}}^{\mathrm{PS}} = \mathbf{M}_{\mathrm{orb}}' + \Delta \mathbf{M}_{\mathrm{PS}}$$

GIPAW

Origin of extra terms: NLPP's coupling to EM fields [1,2]

Correct recipe: Gauge Including Projector Augmented Wave [3]

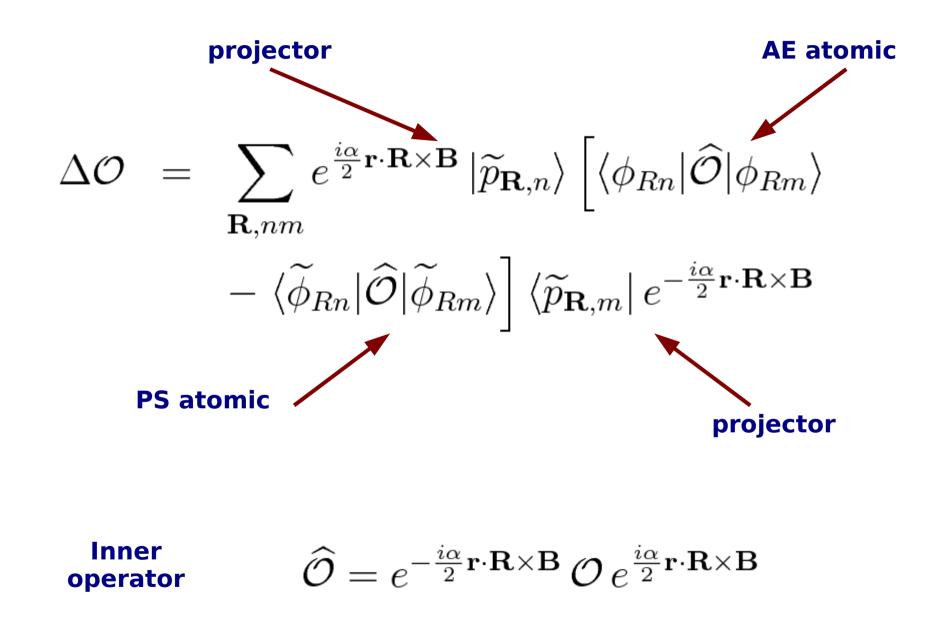
- Gauge invariant, AE and PS eigenvalues coincide
- Reconstruct the AE wvfcs from PS wvfcs
- Based on the PAW method [4]

$$\langle \psi_{\rm ae} | \mathcal{O} | \psi_{\rm ae} \rangle \equiv \langle \psi_{\rm ps} | \overline{\mathcal{O}} | \psi_{\rm ps} \rangle = \langle \psi_{\rm ps} | \mathcal{O} + \Delta \mathcal{O} | \psi_{\rm ps} \rangle$$

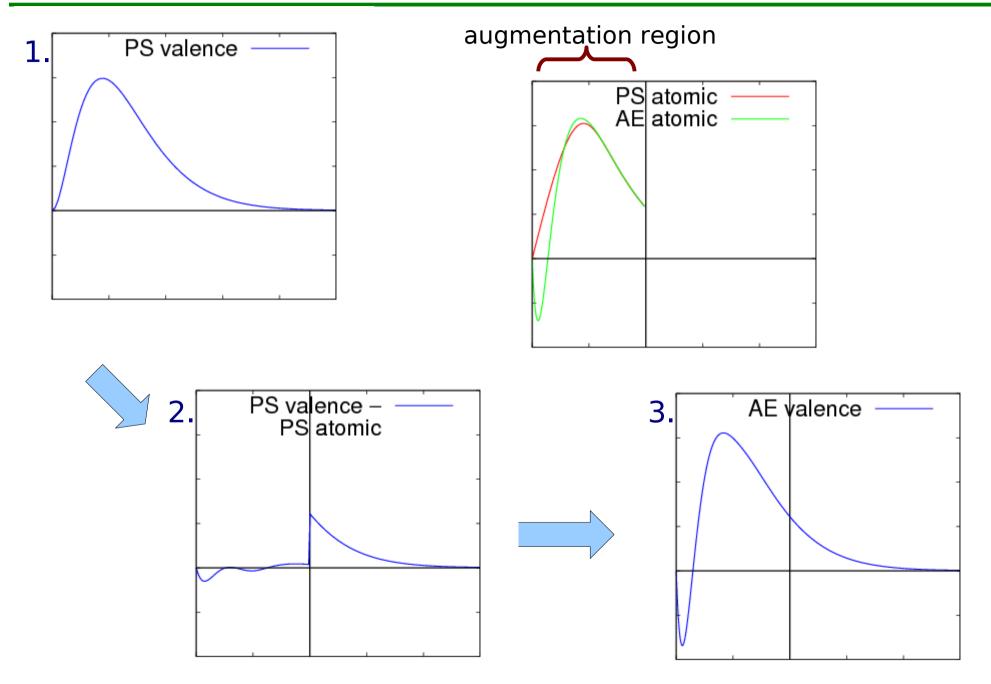
- [1] Ismail-Beigi, Chang and Louie, PRL 87, 087402 (2001)
- [2] Pickard and Mauri, PRL **91**, 196401 (2003)
- [3] Pickard and Mauri, PRB **63**, 245101 (2001)
- [4] Blöchl, PRB **50**, 17953 (1994)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

GIPAW transformation



GIPAW reconstruction



ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Orbital magnetization

 $\mathbf{M} = \mathbf{M}' + \Delta \mathbf{M}_{\mathrm{bare}} + \Delta \mathbf{M}_{\mathrm{para}} + \Delta \mathbf{M}_{\mathrm{dia}}$

$$\mathbf{M}' = \frac{\alpha}{2} \operatorname{Im} \sum_{n\mathbf{k}} f_{n\mathbf{k}} \left\langle \partial_{\mathbf{k}} u_{n\mathbf{k}} \right| \times \left(H_{\mathbf{k}} + E_{n\mathbf{k}} - 2\mu \right) \left| \partial_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle$$
$$\Delta \mathbf{M}_{\text{bare}} = \frac{\alpha}{2} \sum_{\mathbf{R}} \left\langle \left(\mathbf{R} - \mathbf{r} \right) \times \frac{1}{i} \left[\mathbf{r} - \mathbf{R}, V_R^{\text{NL}} \right] \right\rangle$$
$$\Delta \mathbf{M}_{\text{para}} = \frac{\lambda \alpha}{2} \sum_{\mathbf{R}} \left\langle \left(\mathbf{R} - \mathbf{r} \right) \times \frac{1}{i} \left[\mathbf{r} - \mathbf{R}, F_R^{\text{NL}} \right] \right\rangle$$
$$\Delta \mathbf{M}_{\text{dia}} = \frac{\lambda \alpha^2}{2} \sum_{\mathbf{R}} \left\langle E_R^{\text{NL}} \right\rangle$$
All quantities calculated with PS hamiltonian and wavefunctions!

 $\lambda = g'/8$

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Paramagnetic term

$$\begin{split} F_{R}^{\mathrm{NL}} &= \sum_{\mathbf{R},nm} |\widetilde{p}_{\mathbf{R},n}\rangle f_{\mathbf{R},nm} \langle \widetilde{p}_{\mathbf{R},m}| \\ f_{\mathbf{R},nm} &= \langle \phi_{\mathbf{R},n} | \boldsymbol{\sigma} \cdot \nabla V^{\mathrm{AE}} \times \mathbf{p} | \phi_{\mathbf{R},m} \rangle - \langle \widetilde{\phi}_{\mathbf{R},n} | \boldsymbol{\sigma} \cdot \nabla V^{\mathrm{loc}} \times \mathbf{p} | \widetilde{\phi}_{\mathbf{R},m} \rangle \\ & \frac{2}{r} \frac{dV(r)}{dr} \mathbf{S} \cdot \mathbf{L} \end{split}$$

Diamagnetic term

$$\begin{aligned} \boldsymbol{E}_{R}^{\mathrm{NL}} &= \sum_{\mathbf{R},nm} \left| \widetilde{p}_{\mathbf{R},n} \right\rangle \mathbf{e}_{\mathbf{R},nm} \left\langle \widetilde{p}_{\mathbf{R},m} \right| \\ \mathbf{e}_{\mathbf{R},nm} &= \left\langle \phi_{\mathbf{R},n} \right| \mathbf{r} \times (\boldsymbol{\sigma} \times \nabla V^{\mathrm{AE}}) \left| \phi_{\mathbf{R},m} \right\rangle - \left\langle \widetilde{\phi}_{\mathbf{R},n} \right| \mathbf{r} \times (\boldsymbol{\sigma} \times \nabla V^{\mathrm{loc}}) \left| \widetilde{\phi}_{\mathbf{R},m} \right\rangle \end{aligned}$$

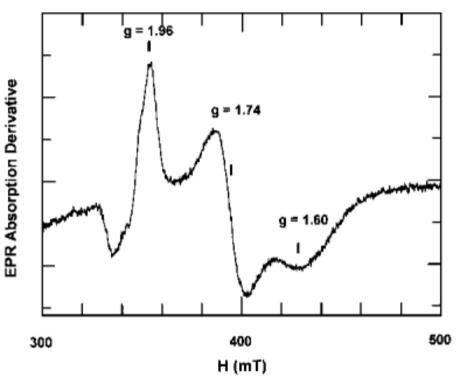
same as in: Pickard and Mauri, PRL 88, 086403 (2002)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

EPR spectroscopy

EPR = Electron Paramagnetic Resonance

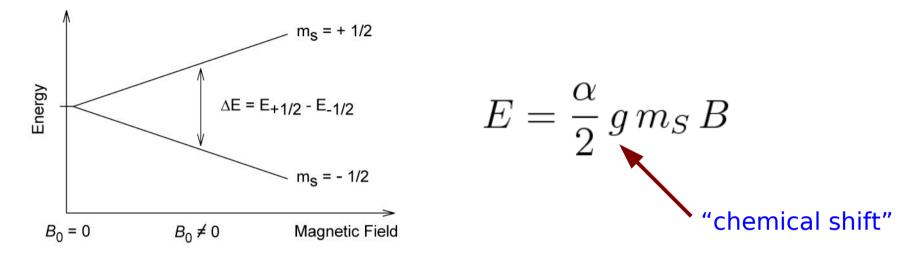
Tipical fields ~0.5 T Resonance ~14 GHz



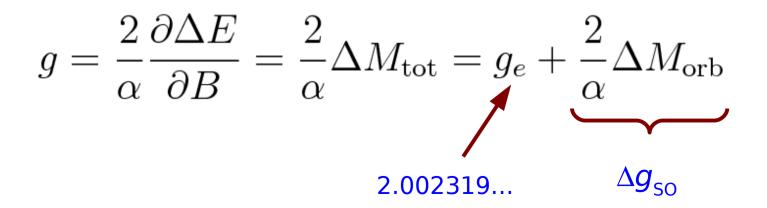
- Paramagnetic defects in solids
- g-tensor and hyperfine couplings very sensitive to chemical environment

Connection to the orbital magn.

For a spin 1/2



The g factor is



Calculation of the g-tensor

- non perturbative method, SO interactions to all orders
- 3 SCF calculations (j = 1..3) including SO
- Δg_{so} directly from M_{orb}

$$\Delta g_{\rm SO}^{ij} = \frac{2}{\alpha} \left[\mathbf{M}_{\rm orb}^{i}(\mathbf{S}=\uparrow_{j}) - \mathbf{M}_{\rm orb}^{i}(\mathbf{S}=\downarrow_{j}) \right]$$

Linear response (LR) method

Linearizing Δg_{so} with respect to SO coupling strenght

$$\Delta \overset{\leftrightarrow}{g}_{\rm SO} = -\alpha \, g' \sum_{S=\pm 1/2} {\bf S} \cdot \int d{\bf r}' \, \nabla V({\bf r}') \times \overset{\leftrightarrow}{j}_{S}^{(1)}({\bf r}')$$

Current induced by uniform magnetic field

- SCF calculation (no SO included)
- LR with respect to uniform **B** (3 pertubations)
- Δg_{so} from induced current

Pickard and Mauri, PRL **88**, 086403 (2002)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Technical details

- 8000 Å³ Cubic supercell
- 100 Ry PW cutoff
- PBE functional
- 2x2x2 k-points
- Norm conserving PPs
- 2 GIPAW projectors x angular momentum channel
- du/dk computed as a covariant derivate

Linear response

- GIPAW linear response (LR) recently implemented in quantum-Espresso by Ceresoli, Seitsonen and Gerstmann
- Available for production in Espresso-4.0
- Capabilities
 - Magnetic susceptibility
 - NMR shielding tensors
 - Electric Field Gradients (EFGs)
 - EPR g-tensor
 - Hyperfine couplings
 - XAS (under development, S. Fabris and Y. Yao)
 - XANES (under development, G. Gougoussis and M. Calandra)

References and codes:

- www.gipaw.net
- www.quantum-espresso.org

Results for diatomic radicals

Molecule		Expt.	LR	This work
H_2^+	Δg_{\parallel}	N/A	-39.2	-39.2
	$\Delta g_{\perp}^{''}$	N/A	-41.7	-42.1
CN	Δg_{\parallel}	N/A	-141	-134
	$\Delta g_{\perp}^{_{\perp}}$	-2000	-2600	-2607
CO^+	Δg_{\parallel}	N/A	-136	-141
	$\Delta g_{\perp}^{_{\perp}}$	-2400	-3229	-3222
BO	Δg_{\parallel}	-800	-70	-75
	$\Delta g_{\perp}^{_{\perp}}$	-1100	-2382	-2391
BS	Δg_{\parallel}	-700	-81	-68
	$\Delta g_{\perp}^{_{\perp}}$	-8100	-9982	-10003
AlO	Δg_{\parallel}	-800	-149	-148
	$\Delta g_{\perp}^{_{\perp}}$	-1900	-1852	-1841
KrF	Δg_{\parallel}	-2000	-360	-363
	$\Delta g_{\perp}^{''}$	66000	59920	58885
XeF	Δg_{\parallel}	-2800	-358	-360
	Δg_{\perp}	124000	163369	146558

- expt. data: solid matrix
- values in ppm
- SOO not included

Results for molecule radicals

Molecule		Expt.	LR	This work
H_2O^+	Δg_{xx}	200	-234	-225
	Δg_{yy}	18000	11972	12028
	Δg_{zz}	4800	4619	4650
NO_2	Δg_{xx}	3900	4878	4807
	Δg_{yy}	-11300	-14230	-14327
	Δg_{zz}	-300	-810	-826
NF_2	Δg_{xx}	-100	-774	-785
	Δg_{yy}	6200	7393	7404
	Δg_{zz}	8800	4680	4684

- expt. data: solid matrix
- values in ppm
- SOO not included

GIPAW corrections

CN

$H_{2}O^{+}$

	Δg_{\parallel}	Δg_{\perp}
$M_{\rm bare}$	-2195	45
$\Delta M_{\rm bare}$	-234	6
$\Delta M_{\rm para}$	-4	-3
$\Delta M_{ m dia}$	8	0
RMC^1	-182	-182
Total	-2607	-134

	Δg_{xx}	Δg_{yy}	Δg_{zz}
$M_{\rm bare}$	31	11780	4894
$\Delta M_{\rm bare}$	-7	497	11
$\Delta M_{\rm para}$	-2	-2	-2
$\Delta M_{\rm dia}$	15	15	9
RMC^1	-262	-262	-262
Total	-225	12028	4650

1. Relativistic Mass Corrections

$$\Delta M_{\rm bare} \sim 5-10 \%$$

Advantages over LR

- need only SCF calculations \rightarrow LDA+U, EXX, OEP, B3LYP, ...
- no magnetic field
- no symmetry restrictions
- SO interaction to all orders

Work in progress

- benchmark against paramagnetic defects in solids
- speedup
- convergence w.r.t. k-points

Orbital magnetization in ferromagnets

Einstein only experiment!

http://www.ptb.de/en/publikationen/jahresberichte/jb2005/nachrdjahres/s23e.html

Einstein-de Haas effect

The effect corresponds to the **mechanical rotation** that is induced in a **ferromagnetic material** (of cylindrical shape and originally at rest), suspended with the aid of a thin string inside a coil, on **driving an impulse of electric current through the coil**. To this mechanical rotation of the ferromagnetic material (say, iron) is associated a mechanical angular momentum, which, by the law of conservation of angular momentum, must be compensated by an equally large and oppositely directed angular momentum inside the ferromagnetic material.

$$M_{\text{tot}} = (\alpha/2) (L + g_e S)$$
$$J_{\text{tot}} = L + S$$

By measuring M_{tot} and J_{tot} you can extract S and L!

Orbital magnetization in metals

Which DFT is better for the orbital magnetization?

Previous calculations

- LDA and GGA underestimate M_{orb} [1,5]
- better agreement with orbital polarization (OP) [2,3,4] $\Delta \mathcal{H} = -B \, L \, L_z$
- ... and CDFT [3,4]
- [6] provides a link between CDFT and OP

- [1] Singh, Callaway, Wang, PRB 14, 1214 (1976)
- [2] Eriksson, Johanson, Albers, Boring, Brooks, PRB 42, 2707 (1990)
- [3] Ebert, Battocletti, Solid State Commun. 98, 785 (1996)
- [4] Ebert, Battocletti, Gross, Europhys. Lett. 40, 525 (1997)
- [5] Sharma, Pittalis, Kurth, Shallcross, Dewhurst, Gross, PRB 76, 100401 (2007)
- [6] Morbec, Capelle, Int. J. Quantum Chem., in press (2008)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Results for Fe, Co and Ni

Method	Fe (bcc)	Co (hcp)	Ni (fcc)
LMTO LDA [2]	0.04	0.07	0.05
LMTO LDA+OP $[2]$	0.06	0.14	0.07
KKR LDA+OP [4]	0.083	0.120	0.051
KKR CDFT [4]	0.070	0.080	0.049
FLAPW LDA [5]	0.053	0.069	0.038
FLAPW GGA $[5]$	0.051	0.073	0.037
This work GGA	0.071	0.092	0.050
Expt. $[7]$	0.081	0.133	0.053

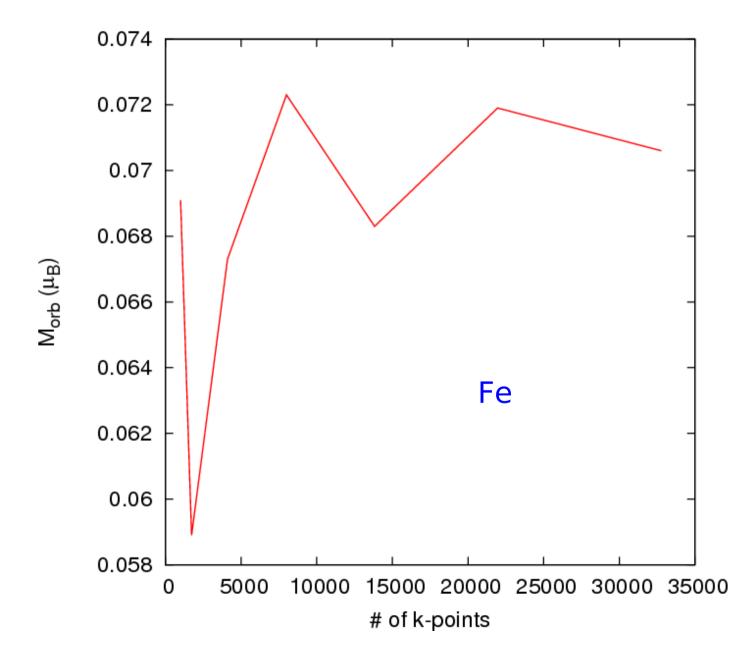
This work: PBE, 90 Ry, up to 32x32x32 k-points

all values in $\mu_{\scriptscriptstyle B}$

[7] Meyer and Asch, J. Appl. Phys. 32, 330S (1961)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

k-points convergence



ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Contributions to the magnetization

$\mathbf{M} = \mathbf{M}' + \Delta \mathbf{M} = (\mathbf{M}_{\rm LC} + \mathbf{M}_{\rm IC}) + \Delta \mathbf{M}$

	$M_{\rm orb}$	$M_{\rm LC}$	$M_{\rm IC}$	ΔM
Fe (bcc)	0.0712	0.0883	-0.0172	0.0001
Co (hcp)	0.0917	0.1086	-0.0177	0.0008
Ni (fcc)	0.0504	0.0503	-0.0015	0.0016

all values in $\mu_{_{B}}$

Conclusions

- Derived orbital magnetization formula for ab initio pseudopotential calculations
- Non perturbative method to compute EPR g-tensor tested against small molecule radicals
- We computed the orbital magnetization of Fe, Co and Ni
- Work in progress
 - evaluate speedup with respect to linear response method
 - combine non perturbative EPR method and LDA+U

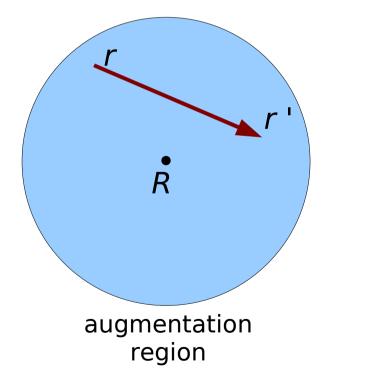
Extra slides

- Coupling to NLPPs (ICL)
- Coupling to NLPPs (Pickard-Mauri)
- Effective spin hamiltonian
- Spin-orbit

Non local pseudopotential

Magnetic field coupling to non local potentials

$$V_R^{\rm NL}(\mathbf{r},\mathbf{r}') \to V_R^{\rm NL}(\mathbf{r},\mathbf{r}') \exp\left[i\alpha \int_{\mathbf{r}\to\mathbf{r}'} \mathbf{A}(\mathbf{s}) \cdot d\mathbf{s}\right]$$



• gauge invariant
$$\mathbf{M} \equiv -\left\langle \frac{\partial \mathcal{H}_{\rm PS}}{\partial \mathbf{B}} \right\rangle = -\frac{\alpha}{2} \left\langle \mathbf{r} \times \mathbf{v}_{\rm PS} \right\rangle$$

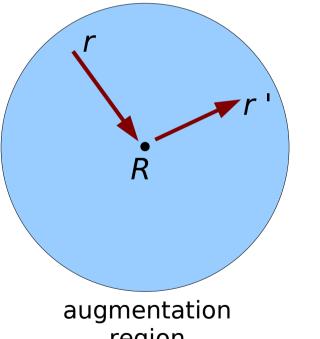
Ismail-Beigi, Chang and Louie, PRL 87, 087402 (2001)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Non local pseudopotentials

Magnetic field coupling to non local potentials

$$V_R^{\rm NL}(\mathbf{r},\mathbf{r}') \to V_R^{\rm NL}(\mathbf{r},\mathbf{r}') \exp\left[i\alpha \int_{\mathbf{r}\to\mathbf{R}\to\mathbf{r}'} \mathbf{A}(\mathbf{s})\cdot d\mathbf{s}\right]$$



- gauge invariant
- same AE and PS eigenvalues

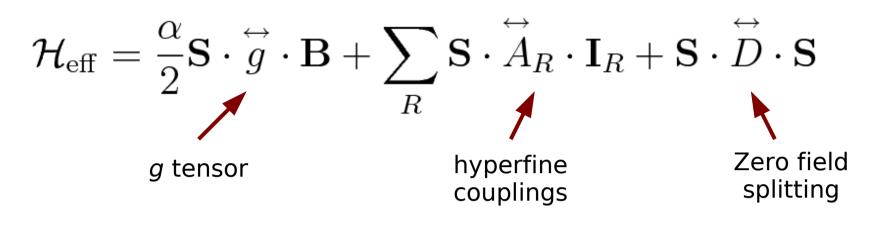
$$\mathbf{M} \equiv -\left\langle \frac{\partial \mathcal{H}_{\rm PS}}{\partial \mathbf{B}} \right\rangle \neq -\frac{\alpha}{2} \left\langle \mathbf{r} \times \mathbf{v}_{\rm PS} \right\rangle$$

region

Pickard and Mauri, PRL **91**, 196401 (2003)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Effective spin hamiltonian



 $\stackrel{\leftrightarrow}{g} = g_e \stackrel{\leftrightarrow}{1} + \Delta \stackrel{\leftrightarrow}{g}_{\rm SO} + \cdots$ SOO + other relativistic

GIPAW

Gauge Including Projector Augmented Wave [1]

- Correct treatment of magnetic field coupling
- Gauge invariant
- AE and PS eigenvalues coincide
- Based on the PAW formalism [2]
- Yields accurate AE properties from PS wavefunctions

$$\langle \psi_{\rm ae} | \mathcal{O} | \psi_{\rm ae} \rangle \equiv \langle \psi_{\rm ps} | \overline{\mathcal{O}} | \psi_{\rm ps} \rangle = \langle \psi_{\rm ps} | \mathcal{O} + \Delta \mathcal{O} | \psi_{\rm ps} \rangle$$

[1] Pickard and Mauri, PRB **63**, 245101 (2001) [2] Blöchl, PRB **50**, 17953 (1994)

ES08 - 20th Annual Workshop on Recent Developments in Electronic Structure Methods

Technical details

- Norm conserving PPs
- 90 Ry PW cutoff, 0.001 Ry cold smearing
- PBE functional
- 2 GIPAW projectors x angular momentum channel
- du/dk computed via k-p method
- up to 32x32x32 k-points
- spin constrained along easy axis (Fe [100], Ni [111], Co [001])

Periodic systems

$$\mathbf{M} = \mathbf{M}' + \Delta \mathbf{M}_{\text{bare}} + \Delta \mathbf{M}_{\text{para}} + \Delta \mathbf{M}_{\text{dia}}$$
$$\mathbf{M}' = \frac{\alpha}{2} \operatorname{Im} \sum_{n\mathbf{k}} f_{n\mathbf{k}} \left\langle \partial_{\mathbf{k}} u_{n\mathbf{k}} \right| \times \left(H_{\mathbf{k}} + E_{n\mathbf{k}} - 2\mu \right) \left| \partial_{\mathbf{k}} u_{n\mathbf{k}} \right\rangle$$
$$\Delta \mathbf{M}_{\text{bare}} = \frac{\alpha}{2} \sum_{n\mathbf{k}\sigma}^{\text{occ}} \sum_{\tau,ij} \left\langle u_{n\mathbf{k}\sigma} \right| \partial_{\mathbf{k}} \beta_{\tau,i}^{\mathbf{k}} \right\rangle \times v_{ij}^{\tau} \left\langle \partial_{\mathbf{k}} \beta_{\tau,j}^{\mathbf{k}} \right| u_{n\mathbf{k}\sigma} \right\rangle$$
$$\Delta \mathbf{M}_{\text{para}} = \frac{\lambda \alpha}{2} \sum_{n\mathbf{k}\sigma}^{\text{occ}} \sum_{\tau,ij} \left\langle u_{n\mathbf{k}\sigma} \right| \partial_{\mathbf{k}} \widetilde{p}_{\tau,i}^{\mathbf{k}} \right\rangle \times f_{ij}^{\tau} \left\langle \partial_{\mathbf{k}} \widetilde{p}_{\tau,j}^{\mathbf{k}} \right| u_{n\mathbf{k}\sigma} \right\rangle$$
$$\Delta \mathbf{M}_{\text{dia}} = \frac{\lambda \alpha^{2}}{2} \sum_{n\mathbf{k}\sigma}^{\text{occ}} \sum_{\tau,ij} \left\langle u_{n\mathbf{k}\sigma} \right| \widetilde{p}_{\tau,i}^{\mathbf{k}} \right\rangle \mathbf{e}_{ij}^{\tau} \left\langle \widetilde{p}_{\tau,j}^{\mathbf{k}} \right| u_{n\mathbf{k}\sigma} \right\rangle$$