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  Main points:

 I. Jupiter has a solid core of 
 16 Earth masses.

 II. It does not rotate as a ``solid’’ body
  ⇒ differential rotation on cylinders.



Detection techniques for extrasolar planets:
radial velocity technique, transient method, …

First planet detected:

Mayor & Queloz, Nature 378 (1995) 355
(Geneva Observatory)

Orbital period: 4.23 days !
Msin(i) = 0.46
a         = 0.05 AU

270+ planets found with radial velocity meas. 14 planets seen with transient technique



2006: Third technique finds extrasolar planets:
observation of gravitational microlensing events

J.P. Beaulieu et al, Nature
(2006).

Detected planet well below the
Doppler detection limit.

D. Queloz, Nature, New & Views (2006).

So far, 4 planets found by
observation of gravitational
microlensing events.



Focus: Characterization of the Interior of Solar
and Extrasolar Giant Planets

n=1018 cm-3 n=1026 cm-3Density

Solar GP: Jupiter, Saturn

Te
m

pe
ra

tu
re

 (K
)



PIMC applicable at:
T>5000K

n=1018 cm-3 n=1026 cm-3

1) Path integral Monte Carlo for T>5000K
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1) Path integral Monte Carlo for T>5000K
2) Density functional molecular dynamics below

Born-Oppenheimer approx.
MD with classical nuclei:

F = m a
Forces derived DFT with
electrons in the instantaneous
ground state.
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Previous Jupiter Models with 3 Layers

Guillot et al. (Jupiter book, 2002, chap.3 )

Composition on the surface (solar):
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T. Guillot’s model: Uncertainties in EOS do not
allow to determine if Jupiter has a rocky core

T. Guillot’s three layer model is based on
1) Hydrogen-helium EOS
2) Surface composition
3) Gravitational moments inferred from

fly-by trajectories (Cassini mission)
 Parameters like core mass or amount of

heavier
 elements “Z” cannot be constraint well.
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Mass of heavy elements in envelop (ME)



Simulations show that helium stabilizes H2 molecules

Molecular hydrogen Metallic hydrogen



Molecular-to-metallic transition in fluid
hydrogen studied with DFT simulations

J. Vorberger, I. Tamblyn, B. Militzer, S. Bonev, “Hydrogen-helium mixtures in the
interior of giant planets”, Phys. Rev. B 75 (2007) 024206.
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continuous as function of T (must
use BOMD not CPMD)

• Negative dP/dT|V < 0 region for
pure hydrogen



Molecular-to-metallic transition in fluid
hydrogen studied with DFT simulations

• Molecular to atomic transition is
continuous as function of T (must
use BOMD not CPMD)

• Negative dP/dT|V < 0 region for
pure hydrogen

• No such region: H-He mixtures

• Jupiter envelope is isentropic,
fully convective and of constant
chemical composition.

J. Vorberger, I. Tamblyn, B. Militzer, S. Bonev, “Hydrogen-helium mixtures in the
interior of giant planets”, Phys. Rev. B 75 (2007) 024206.



Comparison of first-principles EOS with
analytical Saumon-Chabrier-Van Horn model

The most important
difference were found in
the regime of metallic
hydrogen where little
experimental EOS data
are available.
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Comparison of the resulting
Jupiter models
⇒ Different density profile
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DFT-MD Simulations Predict
A Massive Core in Jupiter

Comparison of the resulting
Jupiter models
⇒ Different density profile
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Core mass of 16 ME predicted!



Our new 2-layer Jupiter model

DFT-MD based model
Large core, little ice in envelope

Saumon-Chabrier EOS based model:
Small core, lots of ice in envelope



Jupiter and Saturn made by same formation
mechanism?

Saturn:
All models predict as large core

of 10-20 Earth masses 

Small amount of ices in envelope
2-8 Earth masses

Guillot (2004)
 

Nasa mission to Jupiter: Juno, a low periapse orbiter
High quality gravity and magnetic field data expected during 2016.



Predictions: Jupiter does not rotate as a
solid body ⇒ deep interior winds

 
Model  Equat or ial  

rad ius 
(km) 

J 2  106 J 4  106 J 6  106 

Observed 71492 14696.43       
± 0.21 

- 587.14 
± 1.68 

34.25   
± 5.22 

Sol i d- body 
r otat ion 

Matched Matched - 620 37.5 

Preferr ed 
model :  deep 
winds 

Matched Matched Matched 23.9 

 
 



Summary: New Jupiter Model

• EOS from first-principles simulations (DFT-MD)
• Continuous molecular-to-metallic transition
    ⇒ the planet is fully convective
• Massive core of 16 Earth masses predicted
• Small amount of ices in evelope
• Favored formation mechanism: core-accretion
• To match J4, we propose differential rotation

http://militzer.berkeley.edu



New Experimental Technique: Combination
of Static and Dynamic Compression

• LLNL-CEA collaboration
• Samples are precompressed in modified diamond anvil cell
• Precompression up to 1.5 GPa = 15 kbar

1) Static compression
Diamond anvil cell

2) Dynamic shock comp.
Laser shocks



How far into in Jupiter’s interior can be
probed with precompressed shocks?

3%0.5%30004.41 bar1He

1-RH/RJMass fractionTH(K)PH(GPa)P0Precompression

1

Where does the helium
hugoniot intersect with
Jupiter’s isentrope?

1



Precompression up to 100 GPa is needed
to study Jupter’s interior

62%11000120093 GPa4He

21%650026113 GPa3He

10%5%4200510.75 GPa2He

3%0.5%30004.41 bar1He

1-RH/RJMass fractionTH(K)PH(GPa)P0Precompression
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APS proceedings article (2007)

Militzer, Hubbard,
arXiv:0707.4649
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Comparison of PIMC Simulations with
Laser Shock Experiments on Helium

Principal Hugoniot:

PIMC predicts a lower
compressibility.

Theory: Militzer,      Physical Review Letters, 97  (2006) 175501; 
Exp:     Eggert et al. Physical Review Letters, 100 (2008) 124503.
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Comparison of PIMC Simulations with
Laser Shock Experiments on Helium

Principal Hugoniot:

PIMC predicts a lower
compressibility

With 3…4-fold precompression:

PIMC and experiment agree.

Theory: Militzer,      Physical Review Letters, 97  (2006) 175501; 
Exp:     Eggert et al. Physical Review Letters, 100 (2008) 124503.



Marry PIMC and DFT-MD EOS
Calculations for Dense Fluid Helium

Compare P(T) for a wide range of densities:

Good agreement found if excited 
states are included in DFT-MD.

B. Militzer, submitted to Physical Review B (2008), see arXiv:0805.0317



Marry PIMC and DFT-MD EOS
Calculations for Dense Fluid Helium

Compare E(T) for density of rs=1.86

B. Militzer, submitted to Physical Review B (2008), see arXiv:0805.0317



QMC Calculation of the Metallization of
Solid Helium under Pressure

Method comparison

 QMC and GW: agreement
 GGA:

Underestimates gap by 4eV
40% difference in pressure
20% difference in density

Solid helium metallizes at extreme pressure of 25.7 TPa. This
transition is important for the heat transfer in hydrogen poor
white dwarfs. Our article: arXiv:0805.4433

→QMC done with Casino (Cambridge).
White dwarf layers:



Summary and Job Advertisement

• Theory: First-principles simulations for giant planet interiors
    1) Massive core of 16 Earth masses predicted 

2) Favored formation mechanism: core-accretion 
3) To match J4, we propose differential rotation

• Observations: Rapidly expanding set of known extrasolar planets
• Experiments:  New laser shock experiments find helium more than

5-fold compressible

http://militzer.berkeley.edu

• Possibility to do a PhD in my group
• Post-doc position open in Computational Earth and

Planetary Science


