

Electronic and Optical Excitations in Noble Metal Clusters and Si Nanoshells

Serdar Öğüt

Department of Physics, University of Illinois at Chicago

Outline

- Silver and Gold Clusters (Structures, Polarizabilities)
- Optical Properties within TDLDA
- TDLDA vs GWBSE
- Quasiparticle Gaps in Si Nanoshells
- Exciton Coulomb Energies in Si Nanoshells

Supported by DOE under Grant No DE-FG02-03ER15488

- Juan Carlos Idrobo (UIC, Vanderbilt, ORNL)
- Kopinjol Baishya (UIC)
- Weronika Walkosz (UIC)
- Kimberly Frey (UIC)
- Shing Fan Yip (UIC, UW Madison)
- Julius Jellinek, Jinlan Wang, Karoly Nementh (Argonne)
- Koblar A. Jackson, Mingli Yang (Central Michigan)
- Murilo Tiago (ORNL)
- Fernando Reboredo (ORNL)

Introduction

➢ Due to their intriguing physical/chemical properties (of particular relevance in catalysis, optoelectronics, and nanophotonics applications), noble metal (Cu, Ag, Au) clusters and nanoparticles, currently a topic of technological and fundamental interest.

UIC

Physics Department

Electronic configuration: $nd^{10}(n+1)s^1p^0$. Though completely filled, molecular orbitals associated with *d* electrons have close energetic proximity to and spatial overlap with *sp* states, giving rise to important structural, electronic, and optical properties.

> One particular area, posing a computational challenge is related to accurate modeling of optical properties of noble metal clusters.

As an example, measured spectra for Ag_n (n < 40) embedded in rare-gas matrices have been available since the early 1990s, but direct comparisons with *ab initio* modeling techniques have lagged significantly.

> Recent results from extensive searches yielded ground state and low-energy isomers (up to n = 20) \square Use them to compute absorption spectra for comparison with experiment and to investigate the role of *d* electrons on the spectra.

W. Harbich, Phil. Mag. B 79, 1307 (1999)

- Two of the state-of-the-art computational techniques for calculating optical excitations in materials: Time-dependent linear response theory using DFT (TDDFT) and adiabatic LDA (TDLDA), and Green's function many-body perturbation methods such as GW+Bethe-Salpeter Equation (GWBSE).
- Computational demand for TDLDA (2-point kernel) considerably smaller compared to GWBSE (4-point kernel). GWBSE, however, gives much more accurate excitation energies in extended systems (excitonic effects).
- The two methods mostly applied to *sp*-bonded clusters with considerable success. <u>Systematic application and comparison of TDLDA and GWBSE in finite systems with tightly bound *d* electrons to investigate the role of *d* electrons in optical excitations.</u>

Calculated Ground State Structures, Au_n (n = 3-14,20)

Physics Department

> For Au clusters, shape transition from 2D to 3D at n = 14 (Ag clusters at *n* = 7).

Significant drop in the static \geq polarizability correlates with this shape transition.

Many low-energy isomers at a given size.

Close-packed structures, high coordination numbers.

Shape evolution (from layered prolate to oblate to spherical).

TDLDA Linear Response

. .

Materials Modeling Group

Polarizability:
$$\delta \rho(\mathbf{r}, E) = \int d\mathbf{r}' \Pi(\mathbf{r}, \mathbf{r}', E) V_{ext}(\mathbf{r}', E)$$

Expansion
in poles:
$$\Pi(\mathbf{r}, \mathbf{r}', E) = \sum_{m} \frac{\rho_{m}^{\star}(\mathbf{r})\rho_{m}(\mathbf{r}')}{E - \omega_{m}} - \sum_{m} \frac{\rho_{m}(\mathbf{r})\rho_{m}^{\star}(\mathbf{r}')}{E + \omega_{m}}$$
 $\rho(\mathbf{r})$

Eigenvalue
$$\sum_{v'c'} \left[(\varepsilon_c - \varepsilon_v)^2 \,\delta_{cc'} \delta_{vv'} + 2\sqrt{\varepsilon_c - \varepsilon_v} K_{vc,v'c'}^{LDA} \sqrt{\varepsilon_{c'} - \varepsilon_{v'}} \right] F_{v'c'}^m = \omega_m^2 F_{vc}^m$$
problem:

$$\rho_m(\mathbf{r}) = \sum_{vc} \sqrt{\frac{\varepsilon_c - \varepsilon_v}{\omega_m}} F_{vc}^m u_v(\mathbf{r}) u_c(\mathbf{r})$$

Frequency representation: M. Casida (1995)

Integrated Oscillator Strengths

Materials Modeling Group

- Screening by *d* electrons quenches the OS in noble metal clusters.
- Integrated OS (below 6 eV) per *s* electron significantly below 1.
- Generally good agreement with experimental data.
- *d* electron screening more enhanced in Au_n clusters.

d-character of Low-energy Excitations

Physics Department

UIC

Materials Modeling Group

To understand the effect of *d* states on the OS more quantitatively, calculated the % *d* character for transitions below $E_{cut} = 6 \text{ eV}$

• d character in Au_n larger than in Ag_n due to enhanced sd hybridization.

Materials Modeling Group

 $\Sigma = i \mathbf{GW} \Gamma_{\mathbf{LDA}}$

 $\mathbf{W} = \mathbf{V}_{coul} + \mathbf{V}_{coul} \mathbf{P} \mathbf{W}$

 $= \mathbf{V}_{coul} + \mathbf{V}_{coul} \mathbf{\Pi}_{LDA} \mathbf{V}_{coul}$

Electronic Excitations: GW theory

- Electron screening from time-dependent DFT-LDA.
- Explicit energy integration.
- LDA vertex included in Self-Energy.
- Results directly comparable to photoelectron spectroscopy.

Bethe-Salpeter Equation

Electronic Excitations (IP and EA) Comparison with \triangle SCF and Experiment

Materials Modeling Group

- Within \triangle SCF *IP* = *E*(*n*-1) *E*(*n*) and *EA* = *E*(*n*) *E*(*n*+1).
- Within GW IP = HOMO and EA = LUMO.

• Generally quite good agreement of GW results with experiment (especially Ag and Ag₂). Agreement not so good with \triangle SCF.

• Σ very sensitive to the number of virtual orbitals. Convergence accelerated by including a *static remainder* (estimate the numerical error by truncating the sum over virtual orbitals at the level of COHSEX).

	IP (eV)			EA (eV)		
	NS	ST	Ехр	NS	ST	Exp
Ag	7.12	7.53	7.57	0.92	1.26	1.30
Ag ₂	6.27	7.54	7.60	0.82	1.12	1.06

(700 orbitals included in Σ)

Materials Modeling Group

• Observed good agreement at this level of theory due to the fact that HOMO and LUMO of Ag_n ($n \le 8$) have almost entirely sp character (little or no d character). For example, in Ag₂, HOMO is 92% sp, 8% d, LUMO is 98% sp, and 2% d.

• Singly ionized Ag atom, Ag⁺, is a good test case for a system with large (entirely) *d* character in HOMO (and purely *s* character in LUMO!). IP of Ag⁺ is the double IP of Ag, which is experimentally available. EA of Ag⁺ is the IP of neutral Ag!

	IP (eV)			EA (eV)		
	NS	ST	Exp	NS	ST	Ехр
Ag⁺	16.64	18.92	21.50	7.34	7.64	7.57

• 2.6 eV underestimate of IP in Ag⁺ (4*d* level) due to core-valence separation in the pseudopotential construction (standard $4d^{10}5s^{1}5p^{0}$ reference). Though 4*s* and 4*p* levels are ~ 80 and 50 eV below the 4*d* level, due to their strong *spatial* overlap with 4*d* levels, exchange and correlation among 4*s*, 4*p*, and 4*d* electrons are not described properly by a Slater type exchange-correlation [Rohlfing et al. PRL 75, (1995)]

• Remedy: Create semi-core pseudopotentials by keeping 4*s* and 4*p* levels in the valence. Use the reference $4s^24p^64d^{10}$ with *sp* core radii ~ 1.1 a.u. Very deep pseudopotentials. Use *h* = 0.2 a.u (limited tests)

	NS	ST	Exp	NS	ST	Exp
Ag ⁺ (semicore)	20.67	21.85	21.50	7.04	7.30	7.57

Optical Excitations within GWBSE and TDDFT: Ag and Ag₂

Materials Modeling Group

	TDLDA	GWBSE	Experiment
5s → 5p	4.09	3.68	3.74
5s → 6p	5.44	6.05	6.01

		TDLDA	GWBSE	Experiment
	A - X	3.11	2.54	2.85
Ag ₂	B - X	3.96	3.99	4.44
	C - X	4.75	4.27	4.67

GWBSE clearly performs well for Ag atom. In Ag₂, agreement with experiment not as good. TDLDA in slightly better agreement (perhaps).

Ag

Physics Department

Optical Excitations within GWBSE and TDDFT & Comparison with Experiment

Materials Modeling Group

- For n >2, agreement between TDLDA and GWBSE very poor. At low energies, OS from GWBSE quenched significantly, above 5 eV, high OS transitions.
- TDLDA has clearly better agreement with experimental data (esp. n = 5 - 8).
- Exchange-correlation effects involving 4*d* orbitals and strong non-locality of the BSE kernel are the main reasons for this behavior.
- Even a small mixture of *d* character results in significant quenching and redshifting of the predicted transitions at the GWBSE level, as best illustrated for the case of Ag_2

Physics Department

UIC

d: *v* = 1 - 10 *s*: *v* = 11 (HOMO)

When *d* electrons are removed, very good agreement between TDLDA and GWBSE.

- How do electronic and optical properties of Si nanostructures evolve in going from quantum dots to "nanoshells"?
- Recent interest in optical properties of metallic (typically Au or Ag) shells over a dielectric core.
- Dielectric and optical properties of Si nanostructures are, in many ways, reminiscent of metallic nanoparticles, with the added bonus that Si is much easier to work with!
- Just got curious about effects of confinement vs geometry in Si nanostructures.

• Single-band effective mass approximation (EMA) for impenetrable nanoshells

$$V(r) = 0$$
 if $R_1 < r < R_2$ and ∞ elsewhere

• The *I* = *m* = 0 eigen-functions are

$$\psi(\vec{r}) = \frac{1}{\sqrt{2\pi(R_2 - R_1)}} \frac{\sin\left(\frac{\pi(R_2 - r)}{R_2 - R_1}\right)}{r} \quad \text{for} \quad R_1 < r < R_2$$

• The energy spectrum *E* depends only on the thickness $t = R_2 - R_1$ implying $E_{gap}(R_1, R_2) = E_{gap}(t) \sim t^{-2}$

- To investigate the real R_1 , R_2 dependence of Si nanoshells, considered
 - > Nanoshells of fixed R_1 (changing R_2)
 - > Nanoshells of fixed R_2 (changing R_1 from 0 to $R_{1,max}$)

Both the inner and outer surfaces were passivated by H.

• *Ab initio* real-space calculations (PARSEC) with TM pseudopotentials using a grid spacing h = 0.6 a.u. and boundary radii from 36 a.u. to 50 a.u.

• Quasiparticle gaps calculated with \triangle SCF method by computing ionization potentials (IP) and electron affinities (EA) of *n*-electron nanoshells:

 $IP = E(n-1) - E(n) \qquad EA = E(n) - E(n+1) \qquad E_{qap} = IP - EA$

• *GW* calculations on Si quantum dots suggest that the \triangle SCF method is accurate for EA, while IPs should be shifted upward by ~ 0.5 eV. [Tiago and Chelikowsky, PRB 73, 205334 (2006)]

• Performed GW_f calculations on the smallest nanoshell $Si_{156}H_{184}$ ($R_1 = 5 \text{ A}$, $R_2 = 10.3 \text{ A}$) with h = 0.8 a.u., 750 orbitals (404 occupied). Self-energy computed with a vertex correction using the TDLDA polarizability

	∆SCF	GW _f
IP (eV)	6.65	7.10
EA (eV)	2.62	2.56

Similar trend for Si nanoshells

The unscreened Coulomb energy in the EMA with envelope wavefunctions vanishing at the inner/outer radii can be evaluated.

 $t = R_2 - R_1$

$$E_{Coul} = \frac{2}{\pi t} \int_{0}^{\pi} dx \; \frac{\sin^{2} x (2x - \sin 2x)}{x + \frac{\pi R_{1}}{t}} \qquad \left(R_{1} \to 0 \quad E_{Coul} = \frac{1.786}{t} \right)$$

Even at the EMA level, E_{Coul} depends on both R_1 and R_2

- Both EMA and *ab initio* results find an inverse correlation of E_{Coul} with nanoshell thickness at fixed R_1 (Quantum confinement).
- Ab initio results significantly reduced in magnitude wrt EMA predictions.

E_{Coul} decreases as the nanoshell becomes *more confining*!

Confinement versus Geometry

Materials Modeling Group

In going from the quantum dot to the nanoshell

The *e* or *h* "wavefunction amplitude" increases (confinement)
 The average distance between *e* and *h* increases (less Coulomb interaction)

For a spherical shell, the distance "wins" \square less E_{Coul}

Easiest way to see this: Assume a somewhat unrealistic "constant" wavefunction for the e or the h. E_{Coul} can be calculated analytically

$$\psi(\vec{r}) = V^{-1/2} \implies E_{Coul}(R_1 \neq 0, R_2) < E_{Coul}(R_1 = 0, R_2)$$

Topology versus Geometry

The nanoshell is neither convex (geometrical) nor simple-connected (topological).

Which is more important?

How about the case of a nano-star or a nano-crescent-moon? Simple-connected yet non-convex

Materials Modeling Group

• Time-dependent density functional theory (TDDFT) within the local density approximation (TDLDA) generally yields good agreement with existing experimental studies on absorption spectra of noble Ag_n (n = 1 - 20) clusters.

• *d* electrons affect optical spectra in two distinct ways: (i) quenching the oscillator strengths by screening the *s* electrons, and (ii) by getting directly involved in low-energy optical excitations. These effects enhance in going from Ag to Au to Cu due to increased *spd* hybridization.

• Many-body approach based on the solution of the Bethe-Salpeter equation for the two-particle Green's function (GWBSE method) with standard (non-semicore) pseudopotentials has serious deficiencies (over-screening *s* electrons, strong non-locality) compared to TDDFT.

• The size dependence of electronic excitations in a Si nanoshell can be explained quite well, to a first approximation, by assuming it to be a metallic macroscopic object (within classical EM). Exciton Coulomb energies, on the other hand, have counter-intuitive (in the "nano" quantum-confinement-sense) size dependencies.

• Nano is not just "small". Geometry (or topology) is just as important as "small"