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• Silver and Gold Clusters (Structures, Polarizabilities)
• Optical Properties within TDLDA
• TDLDA vs GWBSE
• Quasiparticle Gaps in Si Nanoshells
• Exciton Coulomb Energies in Si Nanoshells
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Introduction

 Due to their intriguing physical/chemical properties (of particular
relevance in catalysis, optoelectronics, and nanophotonics
applications), noble metal (Cu, Ag, Au) clusters and nanoparticles,
currently a topic of technological and fundamental interest.

 Electronic configuration: nd10(n+1)s1p0. Though completely
filled, molecular orbitals associated with d electrons have close
energetic proximity to and spatial overlap with sp states, giving rise
to important structural, electronic, and optical properties.

 As an example, measured spectra for Agn (n < 40) embedded in
rare-gas matrices have been available since the early 1990s, but
direct comparisons with ab initio modeling techniques have lagged
significantly.

 One particular area, posing a computational challenge is related
to accurate modeling of optical properties of noble metal clusters.

 Recent results from extensive searches yielded ground state
and low-energy isomers (up to n = 20)           Use them to compute
absorption spectra for comparison with experiment and to
investigate the role of d electrons on the spectra.

W. Harbich, Phil. Mag. B 79, 1307 (1999)
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Motivation (Computational Challenge)

• Two of the state-of-the-art computational techniques for calculating
optical excitations in materials: Time-dependent linear response
theory using DFT (TDDFT) and adiabatic LDA (TDLDA), and Green’s
function many-body perturbation methods such as GW+Bethe-Salpeter
Equation (GWBSE).

• Computational demand for TDLDA (2-point kernel) considerably
smaller compared to GWBSE (4-point kernel). GWBSE, however, gives
much more accurate excitation energies in extended systems
(excitonic effects).

• The two methods mostly applied to sp-bonded clusters with
considerable success. Systematic application and comparison of
TDLDA and GWBSE in finite systems with tightly bound d electrons to
investigate the role of d electrons in optical excitations.
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Calculated Ground State Structures, Aun (n = 3-14,20)

3 4 5 6 7 8 9 10

11 12 13 14 20

2D       3D

 For Au clusters, shape transition
from 2D to 3D at n = 14 (Ag clusters
at n = 7).

 Significant drop in the static
polarizability correlates with this
shape transition.

2D       3D
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Calculated Ground State Structures, Agn (n = 10-20)

 Many low-energy isomers at a
given size.

 Close-packed structures, high
coordination numbers.

 Shape evolution (from layered
prolate to oblate to spherical).
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TDLDA Linear Response

Frequency representation: M. Casida (1995)

Polarizability:

Expansion
in poles:

Eigenvalue
problem:
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Ag19
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Comparison with Experiment
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Integrated Oscillator Strengths

• Screening by d electrons quenches the OS in noble metal clusters.
• Integrated OS (below 6 eV) per s electron significantly below 1.
• Generally good agreement with experimental data.

Agn

Aun

• d electron screening more enhanced in Aun clusters.
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d-character of Low-energy Excitations

To understand the effect of d states on the OS more quantitatively, calculated
the % d character for transitions below Ecut = 6 eV

• d contribution below 6 eV
increases almost monotonically
up to n ~ 13 with cluster size.

• For larger clusters, most of the
low energy transitions (about
70%) originate from d levels.
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Comparison with Mie-Gans Theory
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Comparison with Mie-Gans Theory

Calculated normalized moments of inertia
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Electronic (GW) and Optical (BSE) Excitations

Electron screening from time-dependent DFT-LDA.

Explicit energy integration.

LDA vertex included in Self-Energy.

Results directly comparable to photoelectron
spectroscopy.

Electronic Excitations: GW theory

Σ= i GWΓLDA

W = Vcoul + VcoulPW
    = Vcoul + VcoulΠLDAVcoul

Bethe-Salpeter Equation

Many-body neutral excitations:

Eigenvalue problem: qpqp
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Electronic Excitations (IP and EA)
Comparison with ΔSCF and Experiment

• Within ΔSCF  IP = E(n-1) - E(n) and
EA = E(n) - E(n+1).

• Within GW IP = - HOMO and EA = - LUMO.

GW

ΔSCF

• Generally quite good agreement of GW
results with experiment (especially Ag and
Ag2). Agreement not so good with ΔSCF.

1.061.120.827.607.546.27Ag2

1.301.260.927.577.537.12Ag

ExpSTNSExpSTNS

IP (eV) EA (eV)

• Σ very sensitive to the number of virtual
orbitals. Convergence accelerated by
including a static remainder (estimate the
numerical error by truncating the sum over
virtual orbitals at the level of COHSEX).

(700 orbitals included in Σ)
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Electronic Excitations: Case of Ag+

• Observed good agreement at this level of theory due to the fact that HOMO and
LUMO of Agn (n≤8) have almost entirely sp character (little or no d character). For
example, in Ag2, HOMO is 92% sp, 8 % d, LUMO is 98 % sp, and 2% d.

• Singly ionized Ag atom, Ag+, is a good test case for a system with large (entirely) d
character in HOMO (and purely s character in LUMO!).  IP of Ag+ is the double IP of Ag,
which is experimentally available.  EA of Ag+ is the IP of neutral Ag!

7.577.647.3421.5018.9216.64Ag+

ExpSTNSExpSTNS
IP (eV) EA (eV)

• 2.6 eV underestimate of IP in Ag+ (4d level) due to core-valence separation in the
pseudopotential construction (standard 4d105s15p0 reference).  Though 4s and 4p
levels are ~ 80 and 50 eV below the 4d level, due to their strong spatial overlap with 4d
levels, exchange and correlation among 4s, 4p, and 4d electrons are not described
properly by a Slater type exchange-correlation [Rohlfing et al. PRL 75, (1995)]

• Remedy: Create semi-core pseudopotentials by keeping 4s and 4p levels in the
valence. Use the reference 4s24p64d10 with sp core radii ~ 1.1 a.u. Very deep
pseudopotentials. Use h = 0.2 a.u (limited tests)

7.577.307.0421.5021.8520.67Ag+(semicore)

ExpST NS  Exp  ST  NS



Workshop on Recent Developments in Electronic Structure Methods, UCDavis, June 2009

UIC
Materials Modeling Group    Physics Department

Optical Excitations within GWBSE and TDDFT: Ag and Ag2

6.016.055.445s      6p

3.743.684.095s      5p

ExperimentGWBSETDLDA

4.674.274.75C - X

4.443.993.96B - X

2.852.543.11A - X

ExperimentGWBSETDLDA

Ag

Ag2

GWBSE clearly performs well for Ag atom. In Ag2, agreement with
experiment not as good. TDLDA in slightly better agreement (perhaps).
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Optical Excitations within GWBSE and TDDFT &
Comparison with Experiment

• For n >2, agreement between TDLDA
and GWBSE very poor. At low energies,
OS from GWBSE quenched significantly,
above 5 eV, high OS transitions.

• TDLDA has clearly better agreement
with experimental data (esp. n = 5 - 8).

• Exchange-correlation effects involving
4d orbitals and strong non-locality of the
BSE kernel are the main reasons for this
behavior.

• Even a small mixture of d character
results in significant quenching and red-
shifting of the predicted transitions at
the GWBSE level, as best illustrated for
the case of Ag2
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 Case Study: Ag2

Ag Ag

valence

conduction

Ag2

5s

4d

5s

4d

The increase in d character of optical excitations
at the GWBSE level accompanied by a redshift and
quenching of OS compared to TDLDA.
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Thought experiment: “Remove” the d electrons

When d electrons are removed, very good agreement between
TDLDA and GWBSE.

sd

0

0

d    c  

s    c  

d

s

Diagonalize this only

d : v = 1 - 10   s: v = 11 (HOMO)

HOMO         LUMO

HOMO         LUMO+1
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From Nanocrystals to Nanoshells

R1

R2
R

• How do electronic and optical properties of Si nanostructures evolve
in going from quantum dots to “nanoshells”?

• Recent interest in optical properties of metallic (typically Au or Ag)
shells over a dielectric core.

• Dielectric and optical properties of Si nanostructures are, in many
ways, reminiscent of metallic nanoparticles, with the added bonus that
Si is much easier to work with!

• Just got curious about effects of confinement vs geometry in Si
nanostructures.
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Predictions from Effective Mass Approximation

• Single-band effective mass approximation (EMA) for impenetrable nanoshells

• The energy spectrum E depends only on the thickness t = R2 - R1
implying Egap (R1,R2)= Egap(t) ~ t -2
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• The l = m = 0 eigen-functions are

• To investigate the real R1, R2 dependence of Si nanoshells, considered

 Nanoshells of fixed R1 (changing R2)
 Nanoshells of fixed R2 (changing R1 from 0 to R1,max)

Both the inner and outer surfaces were passivated by H.
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Computational Parameters, Methods, GW Test

• Ab initio real-space calculations (PARSEC) with TM pseudopotentials
using a grid spacing h = 0.6 a.u. and boundary radii from 36 a.u. to 50 a.u.

• Quasiparticle gaps calculated with ΔSCF method by computing ionization
potentials (IP) and electron affinities (EA) of n-electron nanoshells:

IP = E(n-1) - E(n) EA = E(n) - E(n+1) Egap = IP - EA

• GW calculations on Si quantum dots suggest that the ΔSCF method is
accurate for EA, while IPs should be shifted upward by ~ 0.5 eV.
[Tiago and Chelikowsky, PRB 73, 205334 (2006)]

• Performed GWf calculations on the smallest
nanoshell Si156H184 (R1 = 5 A , R2 = 10.3 A )
with h = 0.8 a.u., 750 orbitals (404 occupied).
Self-energy computed with a vertex
correction using the TDLDA polarizability  2.56 2.62EA (eV)

 7.10 6.65IP (eV)

   GWf ΔSCF

Similar trend for Si nanoshells
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Size Dependence of Quasiparticle Gaps

R1 = 5 A

R1 = 6.9 A

R1 = 8.4 A

R2 = 14.2 A

R2 = 16.2 A
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Exciton Coulomb Energies for Q. Dots
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Exciton Coulomb Energies for Nanoshells
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The unscreened Coulomb energy
in the EMA with envelope
wavefunctions vanishing at the
inner/outer radii can be evaluated.

Even at the EMA level, ECoul depends on both R1 and R2

R1

R2

t = R2 - R1
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Exciton Coulomb Energies at Fixed R1

R1 = 5 A

R1 = 6.9 A

R1 = 8.4 A

• Both EMA and ab initio results find an inverse correlation of ECoul with
nanoshell thickness at fixed R1 (Quantum confinement).
• Ab initio results significantly reduced in magnitude wrt EMA predictions.
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Exciton Coulomb Energies at Fixed R2

R2 = 14.2 A

R2 = 16.2 A

R2 = 18.5 A

ECoul decreases as the nanoshell becomes more confining!
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Confinement versus Geometry

In going from the quantum dot to the nanoshell

 The e or h “wavefunction amplitude” increases (confinement)
 The average distance between e and h increases (less Coulomb
interaction)

For a spherical shell, the distance “wins”              less ECoul

Easiest way to see this: Assume a somewhat unrealistic “constant”
wavefunction for the e or the h.  ECoul can be calculated analytically
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Topology versus Geometry

The nanoshell is neither convex (geometrical) nor
simple-connected (topological).

Which is more important?

How about the case of a nano-star or a nano-crescent-moon?
Simple-connected yet non-convex
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Summary

• Time-dependent density functional theory (TDDFT) within the local density
approximation (TDLDA) generally yields good agreement with existing
experimental studies on absorption spectra of noble Agn (n = 1 - 20) clusters.

• d electrons affect optical spectra in two distinct ways: (i) quenching the
oscillator strengths by screening the s electrons, and (ii) by getting directly
involved in low-energy optical excitations. These effects enhance in going
from Ag to Au to Cu due to increased spd hybridization.

• Many-body approach based on the solution of the Bethe-Salpeter equation
for the two-particle Green’s function (GWBSE method) with standard (non-
semicore) pseudopotentials has serious deficiencies (over-screening s
electrons, strong non-locality) compared to TDDFT.

• The size dependence of electronic excitations in a Si nanoshell can be
explained quite well, to a first approximation, by assuming it to be a metallic
macroscopic object (within classical EM). Exciton Coulomb energies, on the
other hand, have counter-intuitive (in the “nano” quantum-confinement-sense)
size dependencies.

• Nano is not just “small”. Geometry (or topology) is just as important as “small”


