Ab-Initio Molecular Dynamics Modeling of Molten Superalloys

Mark Asta

Department of Chemical Engineering & Materials Science

ES09 Workshop University of California, Davis June 25, 2009

Acknowledgements

Stefano Angioletti-Uberti¹, Mike Finnis¹, Peter Lee¹, James Lill², Dallas Trinkle³, Chris Woodward⁴

¹Department of Materials, Imperial College London, UK ²High Performance Technologies Inc, WPAFB, Dayton, OH ³Department of Materials Science and Engineering, University of Illinois Urbana-Champaign ⁴Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base

Research Support

US DOE (Office of Basic Energy Sciences) AFOSR (Materials Engineering for Affordable New Systems Program)

Supercomputing Resources

DoD ASC-MSRC Challenge Grant

Ni-Based Superalloys

Higher-T Materials → Higher Efficiency

Evolution of Temperature Capability

1st-Principles Thermo & Kinetic Modeling

Design of High-Temperature Materials

- Requires Data for Bulk and Interfacial
 Free Energies, Diffusion Kinetics,
 Lattice Parameters, ...
- In Many Cases Data Difficult to Measure (e.g., Metastable Phases, High T)

Role of 1st-Principles Calculations

- Predictive Framework for Computing Structural, Thermodynamic and Kinetic Properties
- Applicable to Both Stable and Metastable Phases, Bulk and Interfaces, High & Low T

Defects in Directional Solidification

Directionally Solidified Superalloy Ingot (A. F. Giamei, UTRC)

Freckle Chain in Superalloy (Pollock and Murphy, 1996)

"Channels" in NH₄Cl (Wooster, 1997)

Freckle-Formation Prediction

Mass Density

$$\rho(\{x_{\alpha}\},T) = \frac{1}{V(\{x_{\alpha}\},T)} \sum_{\alpha} x_{\alpha} M_{\alpha}$$

 $x_{\alpha} \rightarrow$ Mole Fraction of Species α

$$M_{\alpha} \rightarrow$$
 Molar Mass of Species α

 $V({x_{\alpha}}, T) \rightarrow Molar Volume$

Accurate Parametrization of **Temperature and Composition Dependent Molar Volume** and **Solute Partitioning** Required to Predict Density Inversions Across Mushy Zone

Molar-Volume Parametrization

K. Mukai, Z. Li and K. C. Mills, Met. Trans. B, vol. 36B, 255 (2005)

$$V(\{x_{\alpha}\},T) \equiv \sum_{\alpha} x_{\alpha} \overline{V_{\alpha}}(x_{\alpha},T)$$

 $\overline{V}_{\alpha}(\{x_{\alpha}\},T) \rightarrow$ Partial Molar Volume of Species α

- Assume \overline{V}_{α} Depends Only on x_{α} and T
 - Neglects Multicomponent Interactions
- Molar Volumes Fit to Experimentally Measured Binary Alloy Data
 - Large Variations of Partial Molar Volumes w/ Temperature & Composition Obtained from Fits

Quantum MD for Molten Ni-Based Alloys

Simulation Details

- (NVT) Dynamics at T=1750 & 1830 K
- Time Step: 0.002 or 0.003 ps
- ~5-10 ps Simulation Time
- 500 Atom System Size
- VASP Code on 64 Processors
- Ultrasoft Pseudopotentials and PAW

Volumes

- 3 or 4 Volumes: 0.95 V_{ref} 1.05 V_{ref}
- Equations of State and Equilibrium Volume

Systems

- Elemental Ni and Al
- Binary Ni-Al, Ni-W, Ni-Re, Ni-Ta
- Ternary Ni-Al-W, Ni-Al-Re, Ni-Al-Ta

Snapshot of Simulation for Ni₄₃₆Al₅₀W₁₄

Radial Distribution Functions

- **Results Indicate Tendency for Chemical Short-Range Ordering**
- **Nearest-Neighbor Bond Lengths**

 $R_{NiX} < (R_{NiNi} + R_{XX})/2$

Nearest-Neighbor Coordinations $g_{NiX}(R_{NiX}) > g_{NiNi}(R_{NiNi}) > g_{XX}(R_{XX})$

Liquid Structure

Ni, Ni₄₇₃W₂₇ and Ni₄₇₃Re₂₇ at 1830 K

Bond Angle Distributions 1.6 Ni-centred, Pure Ni Angle Probability Distribution (%) Ni-Centred, Ni473Re27 **ICOSAHEDRA** 20 1.4 Re-Centred, Ni473Re27 Ni-Centred, Ni473W27 Pure Ni W-Centred, Ni473W27 1.2 Ni473Re27 Ni473W27 15 1 % 0.8 10 BCC 0.6 0.4 5 HCP 0.2 0 0 555 433 544 666 444 676 322 422 565 554 454 311 421 30 60 90 120 150 180 **Common Neighbour Analysis Signature** Angle (°)

Liquid Structures Display Short Range Order Featuring Predominantly Icosahedral and BCC Local Structures

Common-Neighbor Analysis

Diffusion Constants

Pressure-Volume Relations

*Ni*₄₀₀*Al*₁₀₀ *at T*=1830 *K*

Molar Volumes for Molten Ni-Based Alloys

MD Calculations, Mukai Model and Experiment

	T=1750 K		T=1830 K			
Composition	Mukai	AIMD	V _{AIMD} /V _{EXPT}	Mukai	AIMD	V _{AIMD} /V _{EXPT}
Ni ₅₀₀	7.4597	7.57(1)	1.015	7.5724	7.62(1)	1.006
Ni ₄₀₀ Al ₁₀₀	7.7628	7.88(1)	1.015	7.8492	7.94(1)	1.012
Ni ₄₇₃ W ₂₇	7.5534	7.66(1)	1.014	7.6520	7.70(1)	1.006
Ni ₄₀₀ W ₁₀₀	6.5192	7.94(1)		7.3294	7.98(1)	
Ni ₄₇₃ Re ₂₇	7.4940	7.65(1)		7.6499	7.69(1)	
Ni ₄₀₀ Re ₁₀₀	7.5869	7.91(1)		7.8593	7.93(1)	
Ni ₄₇₃ Ta ₂₇	7.3310	7.70(1)		7.5053	7.75(1)	
Ni ₄₀₀ Ta ₁₀₀	1.1043	8.14(1)		4.1440	8.18(1)	
Ni ₄₃₆ Al ₅₀ W ₁₄	7.6920	7.77(1)		7.7655	7.80(1)	
Ni ₄₃₆ Al ₅₀ Re ₁₄	7.6921			7.7510	7.80(1)	
Ni ₄₃₆ Al ₅₀ Ta ₁₄	7.6911	7.79(1)		7.7553	7.84(1)	

All Volumes in Units of cm³/mole

Molar Volume Predictions

Results for Ternary Ni-Al-W Alloys at T=1830 K

Similar results obtained for Ni-AI-Re and Ni-AI-Ta

Results suggest high accuracy of published parameterization for compositions bounded by experimental measurements

Molar Volume Predictions

Results for Binary Alloys

MD results demonstrate limitations in accuracy of published parameterizations when extrapolated beyond bounds of experimental measurements

Partial Molar Volumes

Results for Infinite Dilution

T=1830 K

	Ni-W	Ni-Re	Ni-Ta
MD Calcs	\overline{V}_W^{∞} / \overline{V}_{Ni}^{0} = 1.24	$\overline{V}_{\text{Re}}^{\infty} / \overline{V}_{Ni}^{0} = 1.20$	$\overline{V}_{Ta}^{\infty} / \overline{V}_{Ni}^{0} = 1.37$
Model	$\overline{V}_W^{\infty} / \overline{V}_{Ni}^{0} = 1.33$	$\overline{V}_{\text{Re}}^{\infty} / \overline{V}_{Ni}^{0} = 1.19$	$\overline{V}_{Ta}^{\infty} / \overline{V}_{Ni}^{0} = 1.61$

T=1750 K

	Ni-W	Ni-Re	Ni-Ta
MD Calcs	\overline{V}_W^{∞} / \overline{V}_{Ni}^{0} = 1.25	$\overline{V}_{\text{Re}}^{\infty} / \overline{V}_{Ni}^{0} = 1.22$	$\overline{V}_{Ta}^{\infty} / \overline{V}_{Ni}^{0} = 1.38$
Model	$\overline{V}_W^{\infty} / \overline{V}_{Ni}^{0} = 1.55$	$\overline{V}_{\text{Re}}^{\infty} / \overline{V}_{Ni}^{0} = 1.08$	$\overline{V}_{Ta}^{\infty} / \overline{V}_{Ni}^{0} = 2.13$

MD results suggest relatively weak temperature dependencies for partial molar volumes

Ab-Initio Calculations of Solid-Liquid Phase Equilibria

Free Energies from "Perturbation" Approach

S. Angioletti-Uberti, M. Asta, M. W. Finnis and P. D. Lee, *Phys. Rev. B* (2008) Closely related: C. W. Greeff, *J. Chem. Phys.* (2008)

Convergence Properties

Description of Test System

- Two classical Embedded Atom potentials for Ni-Cu
 - Reference: "smf7" potential due to Foiles (1985)
 - **Target**: "u3" potential due to Foiles, Baskes & Daw (1984)
- Melting temperature and solidus/liquidus boundaries
 - Known to be approximately 100 K higher for smf7 than u3 from previous thermodynamic integration calculations
- Compositions and trajectories
 - Solid and Liquid Pure Ni: Reference trajectory from NVT MD
 - Solid and Liquid NiCu Equiatomic Alloy: Reference trajectory from NVT Monte-Carlo
- Calculated quantities
 - Free Energy Differences
 - Differences in Pure-Ni Melting Temperatures

Convergence Properties

Results for Test System

Convergence Properties

Some Theoretical Considerations

Summary

- Quantum molecular dynamics simulations of molten superalloys
 - Good accuracy demonstrated for molar volumes, diffusivities (and mixing enthalpies)
 - Results provide data to refine molar-volume parametrizations for higher length-scale models in materials design
- Towards first-principles calculations of alloy solid-liquid phase equilibria and thermodynamic properties
 - Free-energy perturbation approach as framework for coupling classical and first-principles simulations for calculation of free energies with DFT accuracy
 - Promising convergence demonstrated for classical model system
 - Approach requires reasonably accurate classical-potential models