Direct Determination of the Chemical Bonding of Individual Impurities in Graphene.

Myron D. Kapetanakis^{1,2}, Wu Zhou^{1,2}, Micah P. Prange^{1,2,*}, Sokrates T. Pantelides^{1,2}, Stephen J. Pennycook^{2,1}, Juan-Carlos Idrobo²

¹Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA

²Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

*Present address: Pacific Northwest National Laboratory, Richland, WA 99352, USA.

Abstract

Using a combination of Z-contrast imaging and atomically resolved electron energy-loss spectroscopy on a scanning transmission electron microscope, we show that the chemical bonding of individual impurity atoms can be deduced experimentally. We find that when a Si atom is bonded with four atoms at a double-vacancy site in graphene, Si 3d orbitals contribute significantly to the bonding, resulting in a planar sp²d-like hybridization, whereas threefold coordinated Si in graphene adopts the preferred sp³ hybridization. The conclusions are confirmed by first-principles calculations as implemented in the Vienna Ab initio Simulation Package and demonstrate that chemical bonding of two-dimensional materials can now be explored at the single impurity level¹.

Acknowledgment

This research was supported by NSF (DMR-0938330) (WZ), ORNL's (ShaRE) User Program (JCI), which is sponsored by the Office of BES, U.S. DoE, the MSE Division, Office of BES, U.S. DoE (SJP, STP), and DoE (DE-FG02-09ER46554) (MDK, MPP, STP). This research used resources of the NERSC, which is supported by the Office of Science of the U.S. DoE (DE-AC02-05CH11231).

[1] Wu Zhou, Myron D. Kapetanakis, Micah P. Prange, Sokrates T. Pantelides, Stephen J. Pennycook, Juan-Carlos Idrobo, *Phys Rev Lett*, **109**, 206803 (2012).