Anharmonic Effects in Superconductors, Metallic Hydrides, and Layered Materials from the SSCHA

lon Errea^{1,2}, Matteo Calandra³ and Francesco Mauri³

¹Donostia International Physics Center (DIPC), San Sebastian, Basque Country, Spain ²IKERBASQUE, Basque Foundation for Science, Bilbao, Spain ³Université Pierre et Marie Curie (UPMC), CNRS, IMPMC, Paris, France

The 26th Annual Workshop on Recent Developments in Electronic Structure Theory, University of North Texas, Denton, USA

May 30, 2014

Introduction

2 The stochastic self-consistent harmonic approximation (SSCHA)

3 Applications

- The inverse isotope effect in palladium hydrides
- Phonon spectra and CDW in 2H-NbSe₂

4 Conclusions

Vibrational properties of solids

The potential for the ions $V(\mathbf{R})$

Determined by the Born-Oppenheimer energy surface

$$V(\mathbf{R}) = V_0 + \sum_{n=2}^{\infty} V_n(\mathbf{R})$$

$$V_n(\mathbf{R}) = \frac{1}{n!} \sum_{s_1...s_n} \sum_{\alpha_1...\alpha_n} \left[\frac{\partial^{(n)} V(\mathbf{R})}{\partial R^{s_1\alpha_1} \dots \partial R^{s_n\alpha_n}} \right]_0 (R^{s_1\alpha_1} - R_{eq}^{s_1\alpha_1}) \dots (R^{s_n\alpha_n} - R_{eq}^{s_n\alpha_n})$$

Ion Errea (DIPC)

Anharmonic Effects from the SSCHA

The harmonic approximation

• Truncation of the potential at second order

$$V(\mathbf{R}) \sim V_0 + V_2(\mathbf{R}) = V_0 + \frac{1}{2}(\mathbf{R} - \mathbf{R}_{eq}) \left[\frac{\partial^2 V(\mathbf{R})}{\partial \mathbf{R}^2} \right]_0 (\mathbf{R} - \mathbf{R}_{eq})$$

- The Hamiltonian can be exactly diagonalized
- Phonons well-defined quasiparticles

The harmonic approximation

• Truncation of the potential at second order

$$V(\mathbf{R}) \sim V_0 + V_2(\mathbf{R}) = V_0 + rac{1}{2}(\mathbf{R} - \mathbf{R}_{eq}) \left[rac{\partial^2 V(\mathbf{R})}{\partial \mathbf{R}^2}
ight]_0 (\mathbf{R} - \mathbf{R}_{eq})$$

- The Hamiltonian can be exactly diagonalized
- Phonons well-defined quasiparticles

Failures of the harmonic approximation

- Phonon intrinsic lifetime
- Lattice thermal conductivity
- Non-trivial temperature frequency-shift
- Stabilization of unstable structures due to thermal/quantum fluctuations (ferroelectrics, CDWs, ...)

Anharmonic effects

$$V(\mathbf{R}) \sim V_0 + V_2(\mathbf{R}) + V_3(\mathbf{R}) + V_4(\mathbf{R}) + \dots$$

Properties

- Finite lifetime of phonons
- Thermal conductivity explained
- Temperature dependence explained

Anharmonic effects

$$V(\mathsf{R})\sim V_0+V_2(\mathsf{R})+V_3(\mathsf{R})+V_4(\mathsf{R})+\dots$$

Properties

- Finite lifetime of phonons
- Thermal conductivity explained
- Temperature dependence explained

Perturbation theory

Valid when

$$V_3(\mathbf{R}) + V_4(\mathbf{R}) + \cdots \ll V_2(\mathbf{R})$$

Anharmonic effects

$$V(\mathsf{R})\sim V_0+V_2(\mathsf{R})+V_3(\mathsf{R})+V_4(\mathsf{R})+\dots$$

Properties

- Finite lifetime of phonons
- Thermal conductivity explained
- Temperature dependence explained

Perturbation theory

Valid when

$$V_3(\mathbf{R}) + V_4(\mathbf{R}) + \cdots \ll V_2(\mathbf{R})$$

When
$$V_3(\mathbf{R}) + V_4(\mathbf{R}) + \cdots \sim V_2(\mathbf{R})$$

Breakdown of perturbation theory

Anharmonic Effects from the SSCHA

The non-perturbative regime

Anharmonic Effects from the SSCHA

May 30, 2014 6 / 31

How to treat it?

- k_BT >> ħω
 Molecular Dynamics
 - Newtonian mechanics for the ions

k_BT ~ ħω Path Integral Monte-Carlo

- exact
- expensive
- difficult to obtain vibrational spectra

The non-perturbative regime

The self-consistent harmonic approximation

The best harmonic potential that mimics the anharmonic one

L1. A New Treatment of Anharmonicity in Lattice Thermodynamics : I

Hooton, Philos. Mag. 46, 522 (1955)

Hartree-Fock for phonons

Electrons:

Effective non-interacting electrons that

minimize the total energy including the e-e

interaction

Phonons:

Effective non-interacting phonons that minimize the free energy with the exact (anharmonic) interaction

Ion Errea (DIPC)

Anharmonic Effects from the SSCHA

May 30, 2014 8 / 31

The vibrational free energy

• The vibrational Hamiltonian

$$H = \frac{\mathbf{P}^2}{2M} + V \quad \rho_H = e^{-\frac{H}{k_B T}} / Z_H$$

• The free energy

 $F_{H} = \operatorname{tr}[\rho_{H}H] + k_{B}T\operatorname{tr}[\rho_{H}\ln\rho_{H}]$

The self-consistent harmonic approximation (SCHA)

The vibrational free energy

• The vibrational Hamiltonian

$$H = \frac{\mathbf{P}^2}{2M} + V \quad \rho_H = e^{-\frac{H}{k_B T}} / Z_H$$

• The free energy

 $F_{H} = \operatorname{tr}[\rho_{H}H] + k_{B}T\operatorname{tr}[\rho_{H}\ln\rho_{H}]$

The free energy functional of a trial Hamiltonian

Trial density matrix ρ_H from a trial Hamiltonian

$$\mathcal{H} = \frac{\mathbf{P}^2}{2M} + \mathcal{V} \quad \rho_{\mathcal{H}} = e^{-\frac{\mathcal{H}}{k_B T}} / Z_{\mathcal{H}}$$

• The free energy functional

 $\mathcal{F}_{H}[\mathcal{H}] = \operatorname{tr}[\rho_{\mathcal{H}} H] + k_{B} T \operatorname{tr}[\rho_{\mathcal{H}} \ln \rho_{\mathcal{H}}]$

The self-consistent harmonic approximation (SCHA)

The vibrational free energy

• The vibrational Hamiltonian

$$H = \frac{\mathbf{P}^2}{2M} + V \quad \rho_H = e^{-\frac{H}{k_B T}} / Z_H$$

• The free energy

 $F_{H} = \operatorname{tr}[\rho_{H}H] + k_{B}T\operatorname{tr}[\rho_{H}\ln\rho_{H}]$

The free energy functional of a trial Hamiltonian

Trial density matrix ρ_H from a trial Hamiltonian

$$\mathcal{H} = \frac{\mathbf{P}^2}{2M} + \mathcal{V} \quad \rho_{\mathcal{H}} = e^{-\frac{\mathcal{H}}{k_B T}} / Z_{\mathcal{H}}$$

• The free energy functional

 $\mathcal{F}_{H}[\mathcal{H}] = \operatorname{tr}[\rho_{\mathcal{H}}H] + k_{B} T \operatorname{tr}[\rho_{\mathcal{H}} \ln \rho_{\mathcal{H}}]$

Variational principle

$$\mathcal{F}_{\mathcal{H}}[\mathcal{H}] = F_{\mathcal{H}} + \operatorname{tr}[\rho_{\mathcal{H}}(V - \mathcal{V})] \geq F_{\mathcal{H}}$$

The SSCHA

$$\mathcal{F}_{\mathcal{H}}[\mathcal{H}] = F_{\mathcal{H}} + \operatorname{tr}[\rho_{\mathcal{H}}(V - \mathcal{V})] \qquad \rho_{\mathcal{H}} = e^{-\frac{\mathcal{H}}{k_{B}T}}/Z_{\mathcal{H}}$$
$$\mathcal{H} = \frac{\mathbf{P}^{2}}{2M} + \frac{1}{2}(\mathbf{R} - \mathbf{R}_{eq})\Phi(\mathbf{R} - \mathbf{R}_{eq})$$

The Stochastic Self-Consistent Harmonic Approximation (SSCHA)

Stochastic implementation of the SCHA that **minimizes the number of calls to the ab initio total-energy-and-force engine**

Conjugate-gradient (CG) minimization of the free energy functional $\mathcal{F}_{H}[\mathcal{H}]$

• Minimization \Rightarrow trajectory in the parameter space ($\mathbf{R}_{eq}; \Phi$)

• We need the gradient of the functional

- f(R) forces on atomic configuration R
- $\bullet~f_{\mathcal{H}}(R)$ trial harmonic forces on atomic configuration R
- $\nabla_{\Phi} \mathbf{A}$ analytic function of Φ and T

The probability distribution

$$ho_{\mathcal{H}}(\mathbf{R}) = \langle \mathbf{R} |
ho_{\mathcal{H}} | \mathbf{R}
angle = a \exp\left[-(\mathbf{R} - \mathbf{R}_{eq}) imes \mathbf{B} imes (\mathbf{R} - \mathbf{R}_{eq})
ight]$$

• **B** analytic function of Φ and T

Stochastic evaluation of the gradient

$$\mathbf{\nabla}\mathcal{F}_{\mathcal{H}}[\mathcal{H}] = \int \mathrm{d}\mathbf{R} O_{\mathcal{H}}[\mathbf{f}(\mathbf{R})]
ho_{\mathcal{H}}(\mathbf{R})$$

Importance sampling

- Create N_c ionic configurations in a supercell according to the initial $\rho_{\mathcal{H}_0}(\mathbf{R})$ probability distribution: $\{\mathbf{R}_I\}_{I=1,...,N_c}$
- Stochastic evaluation of the integral

$$\mathbf{
abla} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_0] \simeq rac{1}{N_c} \sum_{l=1}^{N_c} \mathcal{O}_{\mathcal{H}_0}[\mathbf{f}(\mathbf{R}_l)]$$

- Requires to evaluate forces in supercells: f(R₁)
 - empirical potentials
 - DFT ab initio
 - Beyond DFT (Monte Carlo, GW, ...)

Stochastic evaluation of the gradient

Can we recycle the $f(\mathbf{R}_I)$ forces on the configurations created with the initial $\rho_{\mathcal{H}_0}(\mathbf{R})$ in the CG trajectory?

Reweighting

• Include the reweighting factor in the CG step j > 0

$$\nabla \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{0}] \simeq \frac{1}{N_{c}} \sum_{I=1}^{N_{c}} O_{\mathcal{H}_{0}}[\mathbf{f}(\mathbf{R}_{I})]$$

$$\downarrow$$

$$\nabla \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] \simeq \frac{1}{N_{c}} \sum_{I=1}^{N_{c}} O_{\mathcal{H}_{j}}[\mathbf{f}(\mathbf{R}_{I})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{I})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{I})}$$

The calculated forces can be used throughout the CG minimization

Practical recipe

Ion Errea (DIPC)

May 30, 2014 14 / 31

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $$\begin{split} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] &\simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{split}$$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $$\begin{split} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] &\simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{split}$$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $$\begin{split} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] &\simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{split}$$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $\begin{aligned} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] \simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{aligned}$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $\begin{aligned} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] \simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{aligned}$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $\begin{aligned} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] \simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{aligned}$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $\begin{aligned} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] \simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{aligned}$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell

$$\frac{1}{N_c} \sum_{I=1}^{N_c} \frac{\rho_{\mathcal{H}_j}(\mathbf{R}_I)}{\rho_{\mathcal{H}_0}(\mathbf{R}_I)}$$

- $$\begin{split} \mathcal{F}_{\mathcal{H}}[\mathcal{H}_{j}] &\simeq \mathcal{F}_{\mathcal{H}_{j}} + \\ \frac{1}{N_{c}} \sum_{l=1}^{N_{c}} [V(\mathbf{R}_{l}) \mathcal{V}_{j}(\mathbf{R}_{l})] \frac{\rho_{\mathcal{H}_{j}}(\mathbf{R}_{l})}{\rho_{\mathcal{H}_{0}}(\mathbf{R}_{l})} \end{split}$$
 - Forces computed on a 2 \times 2 \times 1 hcp supercell
 - 20 force calculations (CPU intensive) at Harmonic, A, B, C, D
 - 380 force calculations (CPU intensive) at E

- Computational cost smaller than molecular dynamics
- Includes quantum and thermal fluctuations
- Direct access to free energy without thermodynamical integration
- Direct access to vibrational quasiparticles (phonons)
- It can deal with strong anharmonicity in the non-pertubative regime at any temperature

References:

- 9 Ion Errea, Matteo Calandra, and Francesco Mauri, Phys. Rev. Lett. 111, 177002 (2013)
- Ion Errea, Matteo Calandra, and Francesco Mauri, Phys. Rev. B 89, 064302 (2014)

Palladium hydrides

- A superconducting hydride at ambient pressure
- Display the most anomalous isotope effect in the literature

The isotope effect in superconductors

McMillan's equation for superconducting T_c :

$$T_{c} = rac{\omega_{log}}{1.2} \exp\left(-rac{1.04(1+\lambda)}{\lambda - \mu^{*}(1 - 0.62\lambda)}
ight)$$

Mass dependence of T_c in BCS harmonic superconductors

$$\lambda \sim \mathrm{DOS}(\varepsilon_F) \frac{D^2}{M\omega^2}$$

• In the harmonic approximation:

 $\omega \propto 1/\sqrt{M} \Rightarrow \lambda$ mass independent $\Rightarrow T_c \propto 1/\sqrt{M}$

• The isotope coefficient:

$$\alpha = -\frac{\mathrm{d}\ln(T_c)}{\mathrm{d}\ln M} \sim 0.5$$

The inverse isotope effect in palladium hydrides

• T_c increases with increasing M

 $\alpha_{\rm PdH/PdD} \approx -0.3$

Inconsistent with harmonic theory

Ion Errea (DIPC)

Anharmonic Effects from the SSCHA

May 30, 2014 19 / 31

Harmonic and Anharmonic phonon spectra of palladium hydrides

Errea et al., Phys. Rev. Lett. 111, 177002 (2013)

Harmonic and Anharmonic phonon spectra of palladium hydrides

Errea et al., Phys. Rev. Lett. 111, 177002 (2013)

- Anharmonicity strongly renormalizes H-character optical modes
- Good agreement with experiments

Electron-phonon coupling and superconductivity

Electron-phonon coupling and superconductivity

• The enhancement of the phonon frequencies suppresses the electron-phonon coupling

$$\lambda \sim \mathrm{DOS}(\varepsilon_F) \frac{D^2}{M\omega^2}$$

• The suppression is stronger the lighter the isotope

Origin of anharmonicity

- The H atom is smaller than the octahedral void ⇒ H vibrations are anharmonic rattling modes
- The root mean square displacement does not scale as $1/\sqrt{M}$

The SSCHA + perturbation theory

$$\mathcal{F}_{\mathcal{H}}[\mathcal{H}] = F_{\mathcal{H}} + \operatorname{tr}[\rho_{\mathcal{H}}(V - V)]$$

- SCHA in perturbative limit \rightarrow loop
- Thermal expansion \rightarrow tadpole
- Need to include the **bubble**
- Linewidth and frequency shift from the bubble :

$$\begin{aligned} \Pi_{\nu}(\mathbf{q},\Omega) &= & \Delta_{\nu}(\mathbf{q},\Omega) + i\Gamma_{\nu}(\mathbf{q},\Omega) \\ \Omega_{\nu}(\mathbf{q}) &- & \omega_{\nu}(\mathbf{q}) = \Delta_{\nu}(\mathbf{q},\omega_{\nu}(\mathbf{q})) \\ \overset{\mathrm{HWHM}}{\nu}(\mathbf{q}) &= & \Gamma_{\nu}(\mathbf{q},\omega_{\nu}(\mathbf{q})) \end{aligned}$$

The SSCHA + perturbation theory

$$\mathcal{F}_{\mathcal{H}}[\mathcal{H}] = F_{\mathcal{H}} + \operatorname{tr}[\rho_{\mathcal{H}}(V - V)]$$

- SCHA in perturbative limit \rightarrow loop
- Thermal expansion \rightarrow tadpole
- Need to include the **bubble**
- Linewidth and frequency shift from the bubble :

$$\begin{split} \Pi_{\nu}(\mathbf{q},\Omega) &= \Delta_{\nu}(\mathbf{q},\Omega) + i\Gamma_{\nu}(\mathbf{q},\Omega) \\ \Omega_{\nu}(\mathbf{q}) &- \omega_{\nu}(\mathbf{q}) = \Delta_{\nu}(\mathbf{q},\omega_{\nu}(\mathbf{q})) \\ \overset{\mathrm{HWHM}}{\overset{\mathrm{HWHM}}{\overset{\mathrm{V}}{}}}(\mathbf{q}) &= \Gamma_{\nu}(\mathbf{q},\omega_{\nu}(\mathbf{q})) \end{split}$$

Inelastic Neutron Scattering spectra

$$\chi(\mathbf{q},\Omega) \propto \sigma(\mathbf{q},\Omega) = \sum_{\nu} \frac{2\omega_{\nu}(\mathbf{q})\Gamma_{\nu}(\mathbf{q},\Omega)}{[\Omega^{2} - \omega_{\nu}^{2}(\mathbf{q}) - 2\omega_{\nu}(\mathbf{q})\Delta_{\nu}(\mathbf{q},\Omega)]^{2} + 4\omega_{\nu}^{2}(\mathbf{q})\Gamma_{\nu}^{2}(\mathbf{q},\Omega)}$$

Inelastic Neutron Scattering spectra

$$\chi(\mathbf{q},\Omega) \propto \sigma(\mathbf{q},\Omega) = \sum_{\nu} \frac{2\omega_{\nu}(\mathbf{q})\Gamma_{\nu}(\mathbf{q},\omega_{\nu}(\mathbf{q}))}{[\Omega^{2} - \omega_{\nu}^{2}(\mathbf{q}) - 2\omega_{\nu}(\mathbf{q})\Delta_{\nu}(\mathbf{q},\omega_{\nu}(\mathbf{q}))]^{2} + 4\omega_{\nu}^{2}(\mathbf{q})\Gamma_{\nu}^{2}(\mathbf{q},\omega_{\nu}(\mathbf{q}))}$$

• Simple approach: $\Delta_{\nu}(\mathbf{q}, \Omega) = \Delta_{\nu}(\mathbf{q}, \omega_{\nu}(\mathbf{q}))$ $\Gamma_{\nu}(\mathbf{q}, \Omega) = \Gamma_{\nu}(\mathbf{q}, \omega_{\nu}(\mathbf{q}))$

Inelastic Neutron Scattering spectra

$$\chi(\mathbf{q},\Omega) \propto \sigma(\mathbf{q},\Omega) = \sum_{\nu} \frac{2\omega_{\nu}(\mathbf{q})\Gamma_{\nu}(\mathbf{q},\Omega)}{[\Omega^{2} - \omega_{\nu}^{2}(\mathbf{q}) - 2\omega_{\nu}(\mathbf{q})\Delta_{\nu}(\mathbf{q},\Omega)]^{2} + 4\omega_{\nu}^{2}(\mathbf{q})\Gamma_{\nu}^{2}(\mathbf{q},\Omega)}$$

• Simple approach: $\Delta_{\nu}(\mathbf{q}, \Omega) = \Delta_{\nu}(\mathbf{q}, \omega_{\nu}(\mathbf{q}))$ $\Gamma_{\nu}(\mathbf{q}, \Omega) = \Gamma_{\nu}(\mathbf{q}, \omega_{\nu}(\mathbf{q}))$

 Full approach: Keeping the Ω dependence in Δ_ν(q, Ω) and Γ_ν(q, Ω)

Ion Errea (DIPC)

Anharmonicity induced satellite peaks

PdH at 295 K, X point

Phonon spectra and CDW in 2H-NbSe₂

A prototypical transition metal dichalcogenide

- A CDW and superconductivity coexist
- The harmonic approximation completely breaks down

The SSCHA in 2H-NbSe₂ at 0 GPa

The SSCHA in 2H-NbSe₂ at 0 GPa

- The instabilities disappear in the SSCHA
- The temperature dependence is explained
- Good agreement with experiments

Ion Errea (DIPC)

The SSCHA in 2H-NbSe₂ at 0 GPa

The prediction of T_{CDW} is possible with the SSCHA

Ion Errea (DIPC)

- **1** Anharmonic effects important to explain many physical phenomena
- The SSCHA:
 Efficient method to obtain anharmonic free energies and phonon dispersions
- It can be combined with perturbation theory to obtain phonon linewidths
- Possible to calculate temperature dependent soft-mode driven phase transitions

Thanks to ...

• Matteo Calandra, Francesco Mauri, and Lorenzo Paulatto

• The Basque Government and Ikerbasque

• and you for your attention