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• High-throughput calculations in the Vanderbilt/Rabe Rutgers group 
were initially carried out using published norm-conserving psp tables

• Testing against LAPW+LO all-electron benchmarks showed 
inconsistent agreement

• An improved table was initially generated using the norm-conserving 
OPIUM code

• Better results were obtained using VANDERBILT ULTRASOFT code

• The resulting extensively tested GBRV psp table1 is available at 
http://www.physics.rutgers.edu/gbrv/

• So why worry about norm conservation?

Project backgroundProject background

1. Garrity, Bennett, Rabe & Vanderbilt, Comput. Mater. Sci. 81, 446 (2014) 



Advantages of normAdvantages of norm--conservation and goalsconservation and goals
• Ultrasoft and PAW potentials require computations to treat

– Generalized eigenvalue problems
– Augmentation of the charge density
– Self-consistent contributions to each non-local potential

• Norm-conserving computations can use much simpler algorithms
– Especially important for more complex calculations such as DFPT, GW, 

BES, QMC
– Example:  DFPT for elastic constants has yet to be implemented for 

anything but norm-conserving psps
• Accuracy goal – ncpsps should be competitive with ultrasoft and PAW
• Convergence  goal – systematic optimization should adequately 

“soften” ncpsps
• Robustness goal – “tuning” psps to fit certain sets of test data should 

be unnecessary and disparaged 
– There should be no “black art” in making good psps
– Any graduate student should be able to do so, and should!



• The traditional approach (Kleinman-Bylander, Blöchl):
– Construct pseudo wave function    smoothly matching all electron at 

core radius    and its norm inside    for each   .*
– Invert the Schrödinger equation to find the semi-local pseudopotential
– Choose a local potential matching the all-electron potential outside    .
– Calculate projector from   , the semi-local psp, and local potential. (KB) 
– This duplicates all-electron scattering and its first energy derivative at    

the energy    of the original 
– Additional projectors can duplicate semi-local potential scattering at 

additional    (Blöchl)
• The Vanderbilt approach

– Construct the projectors directly:

– For one projector,

– This is the KB result, but without inverting the Schrödinger eq.
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• Vanderbilt approach for multiple projectors
– Calculate      at several     for each    .
– Construct      satisfying continuity conditions with the      at
– The separable potential can now have the form

• Prove      is symmetric and       is Hermitian if      also satisfy 
generalized norm conservation:

– Log derivatives and energy derivatives of log derivatives agree with AE 
results at each     .

• Branch point: “One could stop here, and still have a useful scheme.”
– Violate generalized norm conservation to get ULTRASOFT psps
– Redefine projectors and restore effective Hermiticity with an overlap 

matrix in a generalized eigenvalue formulation
– Compute an augmentation operator to add charge to the plane-wave 

charge density

iϕ
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ONCVPSP ONCVPSP –– on the other Riemann sheeton the other Riemann sheet
• Enforce generalized norm conservation (Optimized “Norm-

Conserving Vanderbilt Pseudopotentials”2)
• Find that two projectors give excellent log-derivative agreement over 

a wide energy range for a wide variety of atoms and reference   
choices:
– Semi-core – valence, valence – scattering, scattering – scattering

• There is a caveat about relativistic all-electron reference     
• The key matrix element in GNC is

• The symmetry of     and other good properties follow from integration 
by parts of this expression and the corresponding      expression

• For scalar-relativistic and Dirac-equation solutions, this doesn’t work
• In practice,     asymmetries are ~10-4

• Ad-hoc symmetrization results in acceptable errors ~10-5 in 
eigenvalues, log-derivatives, norms, etc. independent of atomic Z
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2. Quoted name from Morrison, Kleinman & Bylander, Phys. Rev. B 47, 6728 (1993) 



VVNLNL format and spinformat and spin--orbit decompositionorbit decomposition
• For easiest use with applications, it is best to find eigenfunctions

giving a diagonal expression with orthonormal projectors:

• For Dirac-wave-function based psps, the sum is over               
• Most applications require SO psps in the (schematic) form

• Direct expression of the SR and SO potentials in terms of Dirac 
requires 8 projectors per    and subtractions of large, nearly equal 
terms in the applications 

• Instead, we find eigenfunctions and      of       and       , and find that 
one or two eigenvalues of each are usually negligibly small (< 10-5 Ha)      
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Convergence optimizationConvergence optimization
• The best method is that of Rappe, Rabe, Kaxiras, and Joannopoulos

– Adjust the psuedo wave function to minimize the kinetic energy error due 
to the cutoff of its plane-wave expansion (proxy for total energy)

– Incorporated in the open-source OPIUM psp code
– This proved too difficult  to adapt to my purposes

• Reformulation of the method introducing a general residual kinetic 
energy operator:

where      are some set of basis functions,      is a spherical Bessel 
functions, and qc is the expansion cutoff

• Introduce an initial basis set of N spherical Bessel functions

• Orthogonalize and normalize
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Optimization (single Optimization (single ϕϕ) made simple) made simple
• M matching conditions

give M linear equations for N coefficients solved for matching       
function and   N-M orthonormal “null space” functions

• Diagonalize the positive-definite matrix                          finding its  
eigenvalues and using its eigenfunctions to expand   

• Residual energy and norm constraint are diagonal quadratic forms

• Huge     dynamic range (~106) demands robust minimization approach
– Search norm-constrained                      hypersphere on a coarse grid for 

global minimum and corresponding     sign 
– Finish off with Newton’s method
– Find diminishing returns for N-M>3-4 (2 is often fine)
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Optimizing two pseudo wave functionsOptimizing two pseudo wave functions

• Choose all-electron       and      , usually with one more node for     

• Optimize       first, with only the quadratic                  norm constraint.

• Optimize        combining the  linear                  overlap constraint with 

linear                  matching constraints.

• Treat the quadratic                  constraint as usual.
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• Optimization is done with a preselected cutoff qc

• After finding      ,                                       is defined for any q
• A set of values can be calculated very efficiently by saving selected 

data as      matrix elements are accumulated.

Calculating a convergence profileCalculating a convergence profile
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Optimizing positive energy reference statesOptimizing positive energy reference states

• Fourier transform of this state 
approaches a delta function and 
a useful Er(q) for a corresponding 
scattering pseudo wave function 
can’t be defined

• Solution – create a potential that 
has a bound state at the desired 
energy

– Generally with one more node 
than lower-energy states

• Barrier to create the bound state 
should be

– Additive to all-electron V
– Zero for r<rc
– Zero with several zero derivatives 

at rc
– Designed so that the bound  

norm inside rc is roughly 
comparable to valence states0 1 2 3 4 5 6 7 8
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Optimizing positive energy reference statesOptimizing positive energy reference states
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• PSPs and all-electron 
pots are identical for 
r<rc in both with and 
without barrier

• For barrier-free 
potentials, bound and 
scattering states obey 
the generalized norm 
conservation condition 
independent of 
scattering-state 
normalization

• All the resulting 
properties are 
preserved despite the 
use of the barrier for 
optimization

• Can use two positive-
energy states with two 
different barriers
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Predicting energy convergence of solidsPredicting energy convergence of solids

• Solid lines are smoothed plane-wave convergence results for diamond Si 
and fcc Cu with one (KB) and two (OV) projectors

• Open circles are Er(q) for the most slowly convergent first projector
• Second projectors generally have negligible influence on convergence



ContinuityContinuity
• Continuity in RRKJ paper and OPIUM code was limited to wave 

function second derivatives and hence psp/projector values
– Slope discontinuity is a concern, for example for elastic constant DFPT 

calculations where 1st and 2nd psp derivatives are taken
– Figure from original paper (below) was a little scary



ContinuityContinuity
• Additional continuity is nice but in fact has very little effect

– Present optimization minimizes slope discontinuity, even when it is not 
enforced (M=3 is equivalent to original)

– This example was the worst found, and needs a lot of magnification to  
see the differences
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General guidelines for General guidelines for ONCVPSPONCVPSP parametersparameters
• Neutral ground state used as reference for all atoms

– Formal charge state has very little effect on charge densities in solids (W. 
Pickett, ’14 March Meeting)

– Scattering states obviate the need for ionic configurations
• Local potential is polynomial extrapolation, not a semi-local V

– Permits two projectors per   , and avoids conflicts with applications
• Nearest cores treated as valence for groups 1, 2, and transition

elements, as are filled d shells for some heavier elements
– Usually little convergence penalty because of optimization
– Polynomial model core used otherwise for non-linear correction

• Psp parameters adjusted using built-in graphics
– Typically, work from some nearby  example and adjust rc, qc, Vloc , N, M  

and projector    separation
– Highly “ghost-resistant,” but have robust detection by log-derivative scans

• Several excited/ionized configurations are tested
– Copies OPIUM capability, but doesn't prove that useful

• Post-testing “parameter tuning” should not be necessary, and in fact 
should not be able to change the results significantly
– Very short bonds may require somewhat smaller core radii

ε
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ScalarScalar--relativistic performance testsrelativistic performance tests

• Variety of coordinations and formal valences
– (Very) coarse sample of periodic table
– Most atoms tested in several systems

• ELK for lapw+lo, ABINIT for psps with 10 – 30 Ha plane-wave cutoffs
– Burch-Murnaghan 3rd-order EOS fits for lapw+lo
– Lattice optimization and DFPT elastic constants fof psps



• ONCVPSP using 
PWSCF with 
25Ha cutoff

• ELK using default 
atomic data and 
convergence 
parameters

• 0.07 eV rms
agreement over 
80 bands at Γ, X, 
and L

• Maximum 
discrepancy 
0.22eV at Γ (      )
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4.074.011811678.168.01MnO

0.580.572532796.486.45Ni

1.481.492712646.486.46Co
1.921.702392485.215.18Fe

OVAEOVAEOVAE

moment (mB)B0 (GPa)a (aB)System

Magnetic systemsMagnetic systems
• Respectable agreement but not as good as results for unpolarized

systems
• 3s, 3p, 3d, and 4s treated as valence for metals, with 3d dominating 

convergence at 30 Ha
• These tests are still a work in progress

– ELK does not find a minimum in the E(V) plot for NiO, so maybe I don’t 
have things right with it yet for polarized systems

– ABINIT with these psps gives a very reasonable NiO lattice constant, 
judging from experiment



• There are no defaults – all data determining results are input in a 
simple template, with examples for guidance
– The same data runs non-, scalar-, or fully-relativistic calculations

• The code is run by simple shell scripts, with a single output file
– Start of file echoes data and gives diagnostic information
– Remainder is parsed by script to generate “walk-through” graphics
– Auxiliary script extracts psp files for ABINIT or QUANTUM ESPRESSO

• Sources are simple Fortran90
– Lots of documentation and comments, no fancy datatypes
– Should be easy to add features or psp formats

• Periodic table of these psps?
– Complete set of input files, eventually yes with volunteered contributions
– Psp set? NO!* Unaccompanied by the code, these become effectively 

undocumented and can’t be improved (violating open-source policy)
– Testing of complete set?  Please, be my guest! (use GBRV test set)

• Remember, the only tests that ultimately matter are experiments

Principles and plans for ONCVPSPPrinciples and plans for ONCVPSP

* Pseudopotentials That Work:  From H to Pu, Bachelet, Hamann & Schluter,
Phys. Rev. B 26, 4199 (1982) 



40_Zr input data40_Zr input data
# ATOM AND REFERENCE CONFIGURATION
# atsym, z, nc, nv, iexc psfile

Zr 40.0   6   4   3   psp8
#
# n, l, f  (nc+nv lines)

1    0    2.0
2    0    2.0
2    1    6.0
3    0    2.0
3    1    6.0
3    2   10.0
4    0    2.0
4    1    6.0
4    2    2.0
5    0    2.0

#
# PSEUDOPOTENTIAL AND OPTIMIZATION
# lmax

2
#
# l, rc, ep, ncon, nbas, qcut (lmax+1 lines, l,s in order)

0    2.20    0.00    5    8    6.00
1    2.20    0.00    5    8    6.00
2    2.00    0.00    5    8    6.50

#
# LOCAL POTENTIAL
# lloc, lpopt, rc(5), dvloc0

4    5    2.0    0.0
#
# VANDERBILT-KLEINMAN-BYLANDER PROJECTORS
# l, nproj, debl (lmax+1 lines, l's in order)

0    2    1.50
1    2    1.50
2    2    1.25

#
# MODEL CORE CHARGE
# icmod, fcfact

0    0.0
#
# LOG DERIVATIVE ANALYSIS
# epsh1, epsh2, depsh

-3.0  3.0  0.02
#
# OUTPUT GRID
# rlmax, drl

5.0  0.01
#
# TEST CONFIGURATIONS
# ncnf

3
#
#   nvcnf (repeated ncnf times)
#   n, l, f  (nvcnf lines, repeated follwing nvcnf's ncnf times)

4
4    0    2.0
4    1    6.0
4    2    2.0
5    0    1.0

#
4
4    0    2.0
4    1    6.0
4    2    1.0
5    0    2.0

#
4
4    0    2.0
4    1    6.0
4    2    1.0
5    0    1.0
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Obtaining and using ONCVPSPObtaining and using ONCVPSP

You can download the open-source package from
http://www.mat-simresearch.com/

or see me later

The formalism, all the relevant references, and most of these results are in
D. R. Hamann, Phys. Rev. B 88, 085117 (2013)

The two key papers upon which ONCVPSP is based are
D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)
A. Rappe et al., Phys. Rev. B 41, 1227 (1990)

For good ultrasoft/paw potentials and good test set see
Garrity, Bennett, Rabe & Vanderbilt, Comput. Mater. Sci. 81, 446 (2014) 


