Reinvigorating Norm Conservation: the ONCVPSP Project

D. R. Hamann

Department of Physics and Astronomy, Rutgers University, Piscataway, NJ and Mat-Sim Research LLC, Murray Hill, NJ

Project background

- High-throughput calculations in the Vanderbilt/Rabe Rutgers group were initially carried out using published norm-conserving psp tables
- Testing against LAPW+LO all-electron benchmarks showed inconsistent agreement
- An improved table was initially generated using the norm-conserving OPIUM code
- Better results were obtained using VANDERBILT ULTRASOFT code
- The resulting extensively tested GBRV psp table¹ is available at <u>http://www.physics.rutgers.edu/gbrv/</u>
- So why worry about norm conservation?
 - 1. Garrity, Bennett, Rabe & Vanderbilt, Comput. Mater. Sci. 81, 446 (2014)

Advantages of norm-conservation and goals

- Ultrasoft and PAW potentials require computations to treat
 - Generalized eigenvalue problems
 - Augmentation of the charge density
 - Self-consistent contributions to each non-local potential
- Norm-conserving computations can use much simpler algorithms
 - Especially important for more complex calculations such as DFPT, GW, BES, QMC
 - Example: DFPT for elastic constants has yet to be implemented for anything but norm-conserving psps
- Accuracy goal ncpsps should be competitive with ultrasoft and PAW
- Convergence goal systematic optimization should adequately "soften" ncpsps
- Robustness goal "tuning" psps to fit certain sets of test data should be unnecessary and disparaged
 - There should be no "black art" in making good psps
 - Any graduate student should be able to do so, **and should!**

Separable psps

- The traditional approach (Kleinman-Bylander, Blöchl):
 - Construct pseudo wave function φ smoothly matching all electron ψ at core radius r_c and its norm inside r_c for each ℓ .*
 - Invert the Schrödinger equation to find the semi-local pseudopotential
 - Choose a local potential matching the all-electron potential outside r_c .
 - Calculate projector from φ , the semi-local psp, and local potential. (KB)
 - This duplicates all-electron scattering and its first energy derivative at the energy ε of the original ψ
 - Additional projectors can duplicate semi-local potential scattering at additional ε (Blöchl)
- The Vanderbilt approach
 - Construct the projectors directly:

$$\left|\chi\right\rangle = (\varepsilon - T - V_{\text{loc}})\left|\varphi\right\rangle, \ T = \left[-d^2/dr^2 + \ell(\ell+1)/r^2\right]/2$$

- For one projector, $V_{\rm NL} = \frac{|\chi\rangle\langle\chi|}{\langle\varphi|\chi\rangle}$
- This is the KB result, but without inverting the Schrödinger eq.

(* ℓ and *m* indices will generally be omitted and can be assumed where needed)

Multi-projector separable psps

- Vanderbilt approach for multiple projectors
 - Calculate ψ_i at several \mathcal{E}_i for each ℓ .
 - Construct φ_i satisfying continuity conditions with the Ψ_i at r_c
 - The separable potential can now have the form

$$V_{\rm NL} = \sum_{i,j} |\chi_i\rangle (B^{-1})_{ij} \langle \chi_j |, B_{ij} = \langle \varphi_i | \chi_j \rangle.$$

• Prove B_{ij} is symmetric and V_{NL} is Hermitian if φ_i also satisfy generalized norm conservation:

$$\left\langle \varphi_{i} \left| \varphi_{j} \right\rangle_{r_{c}} = \left\langle \psi_{i} \left| \psi_{j} \right\rangle_{r_{c}} \right\rangle$$

- Log derivatives and energy derivatives of log derivatives agree with AE results at each \mathcal{E}_i .
- Branch point: "One could stop here, and still have a useful scheme."
 - Violate generalized norm conservation to get *ULTRASOFT* psps
 - Redefine projectors and restore effective Hermiticity with an overlap matrix in a generalized eigenvalue formulation
 - Compute an augmentation operator to add charge to the plane-wave charge density

ONCVPSP – on the other Riemann sheet

- Enforce generalized norm conservation (Optimized "Norm-Conserving Vanderbilt Pseudopotentials"²)
- Find that two projectors give excellent log-derivative agreement over a wide energy range for a wide variety of atoms and reference \mathcal{E}_i choices:
 - Semi-core valence, valence scattering, scattering scattering
- There is a caveat about relativistic all-electron reference Ψ_i
- The key matrix element in GNC is

$$B_{ij} = \int_{0}^{r_{c}} \varphi_{i} \left[\varepsilon_{j} + \frac{1}{2} \frac{d^{2}}{dr^{2}} - \frac{\ell(\ell+1)}{2r^{2}} - V_{\text{loc}} \right] \varphi_{j}$$

- The symmetry of B_{ij} and other good properties follow from integration by parts of this expression and the corresponding Ψ_i expression
- For scalar-relativistic and Dirac-equation solutions, this doesn't work
- In practice, B_{ij} asymmetries are ~10⁻⁴
- Ad-hoc symmetrization results in acceptable errors ~10⁻⁵ in eigenvalues, log-derivatives, norms, etc. independent of atomic Z

2. Quoted name from Morrison, Kleinman & Bylander, Phys. Rev. B 47, 6728 (1993)

$V_{\rm NL}$ format and spin-orbit decomposition

• For easiest use with applications, it is best to find eigenfunctions giving a diagonal expression with orthonormal projectors:

$$V_{\rm NL}(\mathbf{r},\mathbf{r'}) = \sum_{\ell m i} \left| \tilde{\chi}_{\ell m i} \right\rangle e_{\ell i} \left\langle \tilde{\chi}_{\ell m i} \right|$$

- For Dirac-wave-function based psps, the sum is over $j = \ell \pm \frac{1}{2}$
- Most applications require SO psps in the (schematic) form

$$V_{\rm NL}(\mathbf{r},\mathbf{r'}) = \sum_{\ell} \left[V_{\ell}^{\rm SR}(\mathbf{r},\mathbf{r'}) + \mathbf{L} \cdot \mathbf{S} V_{\ell}^{\rm SO}(\mathbf{r},\mathbf{r'}) \right]$$

$$V_{\ell}^{\text{SR}} = \left[(\ell+1)V_{\ell+\frac{1}{2}}^{\text{Rel}} + \ell V_{\ell-\frac{1}{2}}^{\text{Rel}} \right] / (2\ell+1), \quad V_{\ell}^{\text{SO}} = 2 \left[V_{\ell+\frac{1}{2}}^{\text{Rel}} - V_{\ell-\frac{1}{2}}^{\text{Rel}} \right] / (2\ell+1)$$

- Direct expression of the SR and SO potentials in terms of Dirac $\tilde{\chi}_{j,i}$ requires 8 projectors per ℓ and subtractions of large, nearly equal terms in the applications
- Instead, we find eigenfunctions $\chi^{SR}_{\ell,i}$ and $\chi^{SO}_{\ell,i}$ of V^{SR}_{ℓ} and V^{SO}_{ℓ} , and find that one or two eigenvalues of each are usually negligibly small (< 10⁻⁵ Ha)

Convergence optimization

- The best method is that of Rappe, Rabe, Kaxiras, and Joannopoulos
 - Adjust the psuedo wave function to minimize the kinetic energy error due to the cutoff of its plane-wave expansion (proxy for total energy)
 - Incorporated in the open-source OPIUM psp code
 - This proved too difficult to adapt to my purposes
- Reformulation of the method introducing a general residual kinetic energy operator:

$$\left\langle \xi_{\ell i} \left| \hat{E}^{\mathrm{R}}(q_{\mathrm{c}}) \right| \xi_{\ell j} \right\rangle = \int_{q_{\mathrm{c}}}^{\infty} \xi_{\ell i}(q) \xi_{\ell j}(q) q^{4} dq, \quad \xi_{\ell i}(q) = 4\pi \int_{0}^{\infty} j_{\ell}(qr) \xi_{\ell i}(r) r^{2} dr$$

where $\xi_{\ell i}$ are some set of basis functions, j_{ℓ} is a spherical Bessel functions, and q_c is the expansion cutoff

• Introduce an initial basis set of N spherical Bessel functions

$$\xi_i^{\rm B} = j_\ell(q_i r), r \le r_c; \xi_i^{\rm B} = 0, r > r_c$$

• Orthogonalize and normalize

$$\xi_{i}^{O} = \sum_{j=1}^{N} (S^{-1/2})_{ij} \xi_{j}^{B} ; S_{ij} = \left\langle \xi_{i}^{B} \middle| \xi_{j}^{B} \right\rangle$$

Optimization (single φ) made simple

• *M* matching conditions
$$\left. \frac{d^n \varphi}{dr^n} \right|_{r_c} = \left. \frac{d^n \psi}{dr^n} \right|_{r_c}, n = 0, M - 1$$

give *M* linear equations for $N \xi_i^0$ coefficients solved for matching φ_0 function and *N-M* orthonormal "null space" functions ξ_i^N

• Diagonalize the positive-definite matrix $\langle \xi_i^{N} | \hat{E}^{r}(q_c) | \xi_j^{N} \rangle$ finding its eigenvalues e_i^{R} and using its eigenfunctions ξ_i^{R} to expand φ

$$\varphi = \varphi_0 + \sum_i x_i \xi_i^{\mathsf{R}}$$

• Residual energy and norm constraint are diagonal quadratic forms

$$\left\langle \varphi \left| \hat{E}^{r} \left| \varphi \right\rangle \right\rangle = \left\langle \varphi_{0} \left| \hat{E}^{r} \left| \varphi_{0} \right\rangle \right. + \sum_{i} \left[2 \left\langle \varphi_{0} \left| \hat{E}^{r} \left| \xi_{i}^{R} \right\rangle x_{i} + e_{i}^{R} x_{i}^{2} \right] \right. \right. \\ \left. \sum_{i} x_{i}^{2} = \left\langle \psi \left| \psi \right\rangle_{r_{c}} - \left\langle \varphi_{0} \left| \varphi_{0} \right\rangle_{r_{c}} \right. \right]$$

- Huge e_i^{R} dynamic range (~10⁶) demands robust minimization approach
 - Search norm-constrained $\{x_2, ..., x_{N-M}\}$ hypersphere on a coarse grid for global minimum and corresponding x_1 sign
 - Finish off with Newton's method
 - Find diminishing returns for *N-M*>3-4 (2 is often fine)

Optimizing two pseudo wave functions

- Choose all-electron Ψ_1 and Ψ_2 , usually with one more node for Ψ_2
- Optimize φ_1 first, with only the quadratic $\langle \varphi_1 | \varphi_1 \rangle_{r_c}$ norm constraint.
- Optimize φ_2 combining the linear $\langle \varphi_1 | \varphi_2 \rangle_{r_c}$ overlap constraint with linear $\varphi_2 \leftrightarrow \psi_2$ matching constraints.
- Treat the quadratic $\langle \varphi_2 | \varphi_2 \rangle_{r_c}$ constraint as usual.

Calculating a convergence profile

- Optimization is done with a preselected cutoff q_c
- After finding φ , $E^{r}(q) = \langle \varphi | \hat{E}^{r}(q) | \varphi \rangle$ is defined for any q
- A set of values can be calculated very efficiently by saving selected data as \hat{E}^{r} matrix elements are accumulated.

Optimizing positive energy reference states

- Fourier transform of this state approaches a delta function and a useful $E^{r}(q)$ for a corresponding scattering pseudo wave function can't be defined
- Solution create a potential that has a bound state at the desired energy
 - Generally with one more node than lower-energy states
- Barrier to create the bound state should be
 - Additive to all-electron V
 - Zero for $r < r_c$
 - Zero with several zero derivatives at r_c
 - Designed so that the bound ψ norm inside r_c is roughly comparable to valence states

Optimizing positive energy reference states

- PSPs and all-electron pots are identical for r<r_c in both with and without barrier
- For barrier-free potentials, bound and scattering states obey the generalized norm conservation condition independent of scattering-state normalization
- All the resulting properties are preserved despite the use of the barrier for optimization
- Can use two positiveenergy states with two different barriers

Predicting energy convergence of solids

- Solid lines are smoothed plane-wave convergence results for diamond Si and fcc Cu with one (KB) and two (OV) projectors
- Open circles are $E^r(q)$ for the most slowly convergent first projector
- Second projectors generally have negligible influence on convergence

Continuity

- Continuity in RRKJ paper and OPIUM code was limited to wave function second derivatives and hence psp/projector values
 - Slope discontinuity is a concern, for example for elastic constant DFPT calculations where 1st and 2nd psp derivatives are taken
 - Figure from original paper (below) was a little scary

FIG. 2. Pseudopotentials for the copper 3d eigenstate using the HSC method (dashed line) and the present approach (solid line).

Continuity

- Additional continuity is nice but in fact has very little effect
 - Present optimization minimizes slope discontinuity, even when it is not enforced (M=3 is equivalent to original)
 - This example was the worst found, and needs a lot of magnification to see the differences

General guidelines for ONCVPSP parameters

- Neutral ground state used as reference for all atoms
 - Formal charge state has very little effect on charge densities in solids (W. Pickett, '14 March Meeting)
 - Scattering states obviate the need for ionic configurations
- Local potential is polynomial extrapolation, not a semi-local V
 - Permits two projectors per ℓ , and avoids conflicts with applications
- Nearest cores treated as valence for groups 1, 2, and transition elements, as are filled d shells for some heavier elements
 - Usually little convergence penalty because of optimization
 - Polynomial model core used otherwise for non-linear correction
- Psp parameters adjusted using built-in graphics
 - Typically, work from some nearby example and adjust r_c , q_{c} , V_{loc} , N, M and projector ε separation
 - Highly "ghost-resistant," but have robust detection by log-derivative scans
- Several excited/ionized configurations are tested
 - Copies OPIUM capability, but doesn't prove that useful
- Post-testing "parameter tuning" should not be necessary, and in fact should not be able to change the results significantly
 - Very short bonds may require somewhat smaller core radii

One vs. Two projectors

Scalar-relativistic performance tests

- Variety of coordinations and formal valences
 - (Very) coarse sample of periodic table
 - Most atoms tested in several systems
- ELK for lapw+lo, ABINIT for psps with 10 30 Ha plane-wave cutoffs
 - Burch-Murnaghan 3rd-order EOS fits for lapw+lo
 - Lattice optimization and DFPT elastic constants fof psps

Spin-orbit comparison

- ONCVPSP using PWSCF with 25Ha cutoff
- ELK using default atomic data and convergence parameters
- 0.07 eV rms agreement over 80 bands at Γ, Χ, and L
- Maximum discrepancy 0.22eV at Γ (→)

Magnetic systems

- Respectable agreement but not as good as results for unpolarized systems
- 3s, 3p, 3d, and 4s treated as valence for metals, with 3d dominating convergence at 30 Ha
- These tests are still a work in progress
 - ELK does not find a minimum in the E(V) plot for NiO, so maybe I don't have things right with it yet for polarized systems
 - ABINIT with these psps gives a very reasonable NiO lattice constant, judging from experiment

System	a (a _B)		B ₀ (GPa)		moment (m _B)	
	AE	OV	AE	Ο٧	AE	OV
Fe	5.18	5.21	248	239	1.70	1.92
Со	6.46	6.48	264	271	1.49	1.48
Ni	6.45	6.48	279	253	0.57	0.58
MnO	8.01	8.16	167	181	4.01	4.07

Principles and plans for ONCVPSP

- There are no defaults all data determining results are input in a simple template, with examples for guidance
 - The same data runs non-, scalar-, or fully-relativistic calculations
- The code is run by simple shell scripts, with a single output file
 - Start of file echoes data and gives diagnostic information
 - Remainder is parsed by script to generate "walk-through" graphics
 - Auxiliary script extracts psp files for ABINIT or QUANTUM ESPRESSO
- Sources are simple Fortran90
 - Lots of documentation and comments, no fancy datatypes
 - Should be easy to add features or psp formats
- Periodic table of these psps?
 - Complete set of input files, eventually yes with volunteered contributions
 - Psp set? NO!* Unaccompanied by the code, these become effectively undocumented and can't be improved (violating open-source policy)
 - Testing of complete set? Please, be my guest! (use GBRV test set)
- Remember, the only tests that ultimately matter are experiments

* *Pseudopotentials That Work: From H to Pu*, Bachelet, Hamann & Schluter, *Phys. Rev. B* **26**, 4199 (1982)

40_Zr input data

# ATOM AND REFERENCE CONFIGURATION	#			
# atsym, z, nc, nv, iexc psfile	# MODEL CORE CHARGE			
Zr 40.0 6 4 3 psp8	# icmod. fcfact			
#	0 0.0			
# n. l. f (nc+nv lines)	#			
1 0 2.0	# LOG DERIVATIVE ANALYSIS			
2 0 2.0	# epsh1, epsh2, depsh			
2 1 6.0	-3.0 3.0 0.02			
3 0 2.0	#			
3 1 6.0	# OUTPUT GRID			
3 2 10.0	# rimax. drl			
4 0 2.0	5.0 0.01			
4 1 6.0	#			
4 2 2.0	# TEST CONFIGURATIONS			
5 0 2.0	# ncnf			
#	3			
# PSEUDOPOTENTIAL AND OPTIMIZATION	#			
# Imax	# nvcnf (repeated ncnf times)			
2	# n, l, f (nycnf lines, repeated follwing nycnf's ncnf times)			
#	4			
# I, rc, ep, ncon, nbas, gcut (Imax+1 lines, I,s in order)	4 0 2.0			
0 2.20 0.00 5 8 6.00	4 1 6.0			
1 2.20 0.00 5 8 6.00	4 2 2.0			
2 2.00 0.00 5 8 6.50	5 0 1.0			
#	#			
# LOCAL POTENTIAL	4			
# lloc, lpopt, rc(5), dvloc0	4 0 2.0			
4 5 2.0 0.0	4 1 6.0			
#	4 2 1.0			
# VANDERBILT-KLEINMAN-BYLANDER PROJECTORS	5 0 2.0			
# I, nproj, debl (Imax+1 lines, I's in order)	#			
0 2 1.50	4			
1 2 1.50	4 0 2.0			
2 2 1.25	4 1 6.0			
	4 2 1.0			
	5 0 1.0			

Slide show of automated walk-through graphics

Hit enter to continue

40_Zr.out Wave Functions

40_Zr.out Energy Error per Electron

Obtaining and using ONCVPSP

You can download the open-source package from http://www.mat-simresearch.com/ or see me later

The formalism, all the relevant references, and most of these results are in D. R. Hamann, Phys. Rev. B 88, 085117 (2013)

The two key papers upon which ONCVPSP is based are D. Vanderbilt, Phys. Rev. B **41**, 7892 (1990) A. Rappe *et al.*, Phys. Rev. B **41**, 1227 (1990)

For good ultrasoft/paw potentials and good test set see Garrity, Bennett, Rabe & Vanderbilt, Comput. Mater. Sci. **81**, 446 (2014)