Ultrafast Dynamics of Excited Electrons in Materials for Energy Applications

Marco Bernardi

Physics Department, University of California at Berkeley

E-mail: bmarco@civet.berkeley.edu Web: www.bernardilab.com

Ultrafast Dynamics of Excited Carriers

Understand hot carriers in materials:

- Energy distribution vs. time
- Timescale (10–100 fs) for energy loss
- Transport and mean free paths

Hot Carriers in Science and Technology

Solar Cells

Electronics

Photocatalysis

Ultrafast spectroscopy

Hot Carriers from First Principles

First Ab Initio Method for Characterizing Hot Carriers Could Hold the Key to Future Solar Cell Efficiencies

Science Shorts Lynn Yarris (mailto:lcyarris@lbl.gov) • JULY 17, 2014

(http://newscenter.lbl.gov/wp-content /uploads/sites/2/2014/07/Steve-Louieand-Jeff-Neaton.jpg)

Work with Steve Louie and Jeff Neaton (UC Berkeley)

- 1) Computational approach
- 2) Hot carriers in Silicon and GaAs
- 3) Hot carriers from surface plasmons in Au and Ag

Hot Carrier Scattering

Two ultrafast (<1ps) mechanisms for hot carriers to lose energy

Electron – phonon scattering

Electron – electron scattering

"Impact ionization" & Auger processes

Use perturbation theory

 $(\tau_{nk}^{-1})_{el-ph} \sim Im(\Sigma_{nk})_{el-ph} = Im g^2 GD$

Quantum Espresso + EPW code

 $(\tau_{nk}^{-1}) \sim Im(\Sigma_{nk})_{el-el} = ImG \cdot (\varepsilon_{RPA}^{-1} V)$

Quantum Espresso + Berkeley GW

Relaxation time of carrier in state n,k $(\tau_{nk})^{-1} = Im(\Sigma_{nk})_{el-ph} + Im(\Sigma_{nk})_{el-el}$

Workflow for Electron-Phonon Calculation

el-ph matrix elements

$$\frac{5-\text{dim array}}{\frac{5-\text{dim array}}{|g_{nm\mathbf{k}}^{\nu\mathbf{q}}|^{2}[(N_{\nu\mathbf{q}}+1-f_{m,\mathbf{k}+\mathbf{q}})\delta(\epsilon_{n\mathbf{k}}-\epsilon_{m,\mathbf{k}+\mathbf{q}}-\hbar\omega_{\nu\mathbf{q}}) + (N_{\nu\mathbf{q}}+f_{m,\mathbf{k}+\mathbf{q}})\delta(\epsilon_{n\mathbf{k}}-\epsilon_{m,\mathbf{k}+\mathbf{q}}+\hbar\omega_{\nu,\mathbf{q}})]}{\text{Lorentzian 10 meV}}$$
"Monte Carlo" integration

Thermalization Loss in Solar Cells

Shockley-Queisser efficiency limit for a single-junction solar cell: ~33%

H. Atwater, A. Polman, Nat. Mater. 11, 174 (2012)

Understand ultrafast (sub-ps) loss of solar energy from first principles

Hot Carrier Relaxation Times in Silicon

El-ph scattering dominates thermalization El-ph scattering rate ~ electronic DOS Fast relaxation away from band edge: ~10 fs Slower relaxation near the band edge: >100 fs

M. Bernardi et al., Phys. Rev. Lett. 112, 257402 (2014)

Mean Free Paths

Distance hot carriers can travel before emitting a phonon

Mean free path:
$$L_{n,\vec{k}} = v_{n,\vec{k}} \cdot \tau_{n\vec{k}}$$

Mean free path ~ 5–10 nm in Si

[100] direction favorable for hot electron extraction

M. Bernardi et al., Phys. Rev. Lett. 112, 257402 (2014)

The First Picosecond after Sunlight Absorption in Silicon

Initial population at t=0 under AM1.5 solar illumination

$$f(E,t=0) \propto \int_{0}^{4 \text{ eV}} d\omega \frac{D(E-\omega)}{\text{Electron DOS}} \frac{\cdot J_{ph}(\omega) \cdot \alpha(\omega)}{\text{AM1.5}} \frac{\alpha(\omega)}{\text{Experimental photon flux absorption}}$$

Thermalized population at t \approx 1 ps: Fermi-Dirac at T=300K (\sim 10¹⁷ cm⁻³ carriers)

Carrier Dynamics

Boltzmann equation for carrier in state *n*,**k**

$$\frac{df_{n,\mathbf{k}}(t)}{dt} = -\frac{f_{n,\mathbf{k}}(t) - f_{n,\mathbf{k}}(t_{th})}{\tau_{n,\mathbf{k}}}$$

The First Picosecond after Sunlight Absorption in Silicon

Experiment: thermalization in ~250–300 fs near CBM

Model hot carriers and ultrafast spectroscopy

M. Bernardi et al., Phys. Rev. Lett. 112, 257402 (2014)

Hot Electrons in GaAs

Ab initio phonon and bandstructure calculations Compute ~50 trillion el-ph matrix elements No adjustable parameters in the calculation

Multiple parameters for el-ph coupling (deformation potentials)

M. Bernardi et al., PNAS 112, 5291(2015)

GaAs – Mode Contributions

Acoustic modes dominate hot electron scattering (not LO!) LO strongest among optical modes

M. Bernardi et al., PNAS 112, 5291(2015)

GaAs – Mode Contributions Comparison

Where did the "old" (semiempirical) calculations go wrong?

---- Semiempirical

Hot Electron Thermalization in GaAs

Young, et al. Phys. Rev. B 50, 2208 (1994)

Each valley sampled with 2003 k-grid

Excellent agreement with pump-probe experiments

Help resolve a long-standing controversy on HCs in GaAs

Surface Plasmon Polariton (SPP)-to-Hot Carrier Conversion in Noble Metals

M. Bernardi et al., Nature Communications 6, 7044 (2015)

- 1) Hot carrier generation and energy distribution in Au & Ag
- 2) Ultrafast hot carrier transport mean free path, relaxation time
- 3) Ideal regime to extract hot carriers

Noble Metals Bandstructure

The relative energies of *d* and *s* states are crucial in the generation and transport of hot carriers (need GW)

Hot Carrier Generation

Energy and momentum conserving transitions generate hot carriers with a distribution of energies (in a probabilistic sense)

Hot carrier population distribution (arb. units) vs. Energy

Hot Carrier Mean Free Path

Volcano shape due to strong scattering at E>2 eV away from Fermi energy s holes ~isotropic, s electrons and d holes anisotropic, consistent with experiments

M. Bernardi et al., Nature Communications 6, 7044 (2015)

Optimization of Hot Carrier Extraction

Silver may be better than gold for hot carriers from SPPs

M. Bernardi et al., Nature Communications 6, 7044 (2015)

Application to Carrier Transport

"... The conduction electrons are a nuisance in metals" J. M. Ziman, 1964

Conductivity
$$\sigma_{i,j} = e^2 \sum_{n,\mathbf{k}} \tau_{n,\mathbf{k}} v_{n,\mathbf{k},\mathbf{i}} v_{n,\mathbf{k},\mathbf{j}} \left(-\partial f / \partial E \right)$$

Can predict resistivity within 10% of experiment Can be applied to metals, semiconductors, insulators

Jamal Mustafa, M. Bernardi, S.G. Louie (to be submitted)

Summary

Carrier dynamics and scattering by electrons and phonons

Design hot carrier devices and experiments

Microscopic understanding of time-resolved experiments

Perturbation theory is promising for excited state timescales

Non-equilibrium theories necessary for coherent / driven dynamics

E-mail: bmarco@civet.berkeley.edu Web: www.bernardilab.com