
G.F.  Bertsch*
University of Washington

June 23, 2015

ES2015 workshop

1. Goals, algorithms
2.  Electron-phonon coupling
       a)   molecules
       b)   coherent phonon generation 
3.  Nonlinear regime
       a)   Hyperpolarizability, Franz-Keldysh
       b)   Rabi oscillations
       b)   Intense laser pulses
       c)   Simulating pump-probe experiments
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Perspective
  1.  TDDFT is an effective Hamiltonian theory  (adiabatic theory)
  2.  Utility of a predictive theory is a function of            
      computational cost as well as accuracy.

Goals
  1.  Exploit the real-time method.
  2.  Determine the accuracy of the theory in
      different contexts.
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Algorithm for TDDFT   (Yabana code)

1.   Uniform real-space mesh        (~0.5 Bohr mesh)
2.   Laplacian by 9-point difference 
3.   Time integration by 4-th order expansion of 
4.   Mixed gauge for crystalline lattices
5.   multiscale for surface effects   (~10^5  p.h. )

exp(�iHks�t)
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Electron-vibration coupling in molecules

 J. Chem. Phys.115 4051 (2001)

Israel J.  Chem. 42 151 (2002)

Vibronic  coupling in ethylene
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Vertical transitions in TDDFT:
Herzberg-Teller in benzene
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Coherent phonon generation

22A527-2 Shinohara et al. J. Chem. Phys. 137, 22A527 (2012)

FIG. 1. Observation of coherent phonons in crystalline Sb generated by high-
intensity laser pulses of 1.55 eV photon energy. Reprinted with permission
from K. Ishioka, M. Kitajima, and O. Misochko, J. Appl. Phys. 103, 123505
(2008). Copyright c© 2008, American Institute of Physics.

dependence on the time with respect to the pump pulse. Thus,
the displacive mechanism has a phase differing by π /2 with
respect to the ISRS mechanism.

At first sight it would seem that the ISRS and the dis-
placive mechanisms are quite different physical processes. In
an attempt to establish a unified description, Stevens, Kuhl,
and Merlin (SKM) proposed a unified model of to describe
both ISRS and displacive mechanisms in term of the dielec-
tric properties of the medium.7 Their approximate formula for
the Fourier component of the force, F("), is given by

F (") = C

[
dRe(ε)

dω
+ 2iIm(ε)

"

] ∫ +∞

−∞
ei"t |E(t)|2dt, (3)

where E(t) is the laser electric field, ω is the laser frequency,
and ε is the dielectric function. In Sec. IV below we will
compare the formula with the results of the TDDFT dynam-
ics to assess the reliability of the approximations made in
deriving it.

The transition from adiabatic to nonadiabatic coupling
has been observed in crystalline Si (Refs. 8–10) as a rather
rapid change of phonon phase as the laser photon energy
crosses the direct band gap. We have previously applied
TDDFT to this system and found that it clearly reproduced
this transition.11, 12 In this work we will use the same com-
putational framework, but applied to a semimetal rather than
a semiconductor having a very well defined band gap. How-
ever, due to the different crystal symmetry (A7 rather than
cubic) the codes had to be significantly modified to treat
Sb. In Sec. III we briefly summarize the computational as-
pects, in particular, the extensions needed for the present
application.

II. TIME-DEPENDENT DENSITY FUNCTIONAL
THEORY

We have found that the Lagrangian formulation of the dy-
namics problem is very helpful not only from a formal point
of view but also to construct the computational equations
of motion satisfying the necessary conservation laws. The

Lagrangian we used in our earlier study11, 13 contains the fol-
lowing elements:

(1) a fully microscopic treatment for the electron dynam-
ics using a Kohn-Sham (KS) energy functional to evolve the
time-dependent electron orbitals;

(2) a classical treatment of the time-dependent electric
field in the crystalline unit cell;

(3) a classical treatment of the dynamics of ionic centers,
often called “Ehrenfest dynamics.”

We write the Lagrangian as a sum of three terms, the
Kohn-Sham, electromagnetic, and ionic parts,

L = LKS + Lem + Lion. (4)

The Kohn-Sham term is given by the following integral over
the unit cell ":

LKS =
∑

i

∫

"

d#r
{
ψ∗

i i
∂

∂t
ψi − 1

2m

∣∣∣
(
−i #∇ + e

c
#A
)
ψi

∣∣∣
2
}

−
∫

"

d#r {(enion − ene) φ − Exc[ne]} . (5)

The variables here are the electron orbitals ψi(#r, t), the elec-
tric field potentials, φ(#r, t) and #A(t), and the ionic coordinates
#Rα(t). The vector potential #A(t) is a function of time with-

out spatial dependence and describes spatially uniform elec-
tric field, while a scalar potential φ(#r, t) is periodic in the unit
cell. The separation of the electric field into these two compo-
nents is crucial to our computational scheme.14, 15 It enables
us to apply Bloch theorem for electron orbitals ψ i at each
time. The ionic density nion is described with the ionic coor-
dinates Rα and the electron density ne with the Kohn-Sham
orbitals.

We employ the same exchange-correlation energy func-
tional Exc[n] for dynamical calculation as that is used for the
ground state calculation. This is the well-known “adiabatic
approximation” in time-dependent density functional theory.
This does not mean that we assume adiabatic electron dynam-
ics: In our calculation, orbitals which are not occupied in the
ground state mix with occupied orbitals in ψ i in the time evo-
lution. In this sense, the electron dynamics in an external field
can be highly non-adiabatic.

The electromagnetic Lagrangian is taken as

Lem = 1
8π

∫

"

d#r| #∇φ|2 + "

8πc2

(
d #A
dt

)2

. (6)

This form is sufficient to treat the coupling in the medium
at length scales small compared to the photon wave length.
For the full electrodynamics including the transmission and
reflection of photons from the crystal surface, the Lagrangian
must also include magnetic fields. This has been carried out
in another context, namely, the deposition of energy by strong
laser pulses.16

We separate the vector potential #A(t) into external
field contribution #Aext (t) and induced polarization #Aind (t).
Whether to include the induced polarization or not in #A(t)
depends on the macroscopic geometry of the sample and the
polarization direction of the electric field. In the present cal-
culation, we employ the longitudinal geometry in which the
induced field is included in #A(t).
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below the band gap. Here the energy drops almost to zero
after the pulse is over, as to be expected. The green dashed
curve, corresponding to a frequency at the band gap, shows
that some excitation energy remains after the end of the
pulse, comparable in magnitude to the total energy at the
peak. Finally, the blue dotted curve shows that above the gap
the laser-electron interaction is highly dissipative, leaving a
large excitation energy in the final state. The lower panel in
the figure shows the number of excited electrons as a func-
tion of time. This is calculated by taking the overlaps of the
time-dependent occupied orbitals with the initial state static
orbitals as in Ref. 34. The results are qualitatively very simi-
lar to what we found for the energy. Below the direct band
gap, the excited electron shows a peak during the pulse and
then drops off to a very small value in the final state. At
higher frequencies, the excitations remain in the final state
and it is not possible to distinguish the real excitation from
the virtual one during the pulse. In summary, one sees an
adiabatic response below the gap switching rather abruptly to
a strongly dissipative response above the gap.

We next show the electron dynamics in real space. Figure
7 shows the electron density in the plane of Fig. 1. The left
panel shows the ground-state electron density, and the
middle and right panels show the change in electron density
from that in the ground state when the laser pulse of fre-
quency !"=2.5 eV, close to the band gap, is irradiated. The
external and the total electric fields for this laser pulse are

shown in the panel !b" of Fig. 4. The middle and right panels
correspond to the time t=8.1 fs and t=26.7 fs, respectively.
In the middle and right panels, red and blue indicate an in-
crease or decrease in electron density, respectively. At t
=8.1 fs, the electric field is maximum and there is a strong
virtual excitation of the electrons. In the middle panel of Fig.
7, a movement of electrons is seen in the bond connecting
two Si atoms. At t=26.7 fs, the external electric field ended.
Since the ultrashort laser pulse includes frequency compo-
nents above the direct band gap, there appear real electron-
hole excitations. In the right panel of Fig. 7, one can see that
the excitation results in a decreased density in the bond re-
gion and an increase near the Si atoms but away from the
bond. One should note that the coloring of the middle and
right figures are different by a factor of 40 to improve the
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FIG. 5. !Color online" Dependence of the dielectric function on
the phonon coordinate. The effective dielectric function is evaluated
from the maximum strength ratio of the external and total electric
fields. The pulse shape is taken of Eq. !7" with !"=1 eV.
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FIG. 6. !Color online" Excitation of the crystal during and after
the pulse for several laser frequencies. The top panel shows the
energy in the unit cell including electron-hole excitation energy and
the electric field energy. The bottom panel shows the number of
electron-hole pairs in the unit cell.

FIG. 7. !Color online" Left panel shows the ground-state electron density in the plane shown in Fig. 1. The middle and right panels show
the change in the electron density from that in the ground state by the laser pulse corresponding to the panel !b" of Fig. 4. The middle panel
corresponds to the time t=8.1 fs and the right panel to the time t=26.7 fs, respectively. In the middle and right panels, the red color
indicates the increase in the electron density while blue color indicates the decrease.
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Coherent phonon generation

!Reo!t" = !R0 cos!"pht + #" + !R̄ . !1"

One also sees a shift in the equilibrium value in the experi-
mental measurement which may be fit by adding a constant
term !R̄.

The physical origin of the effect can be seen from the
response to the field within a unit cell, depicted in Fig. 1. The
left panel shows a view of the atoms in the eight-atom unit
cell, bisected by a plane defined by the #011$ and #100$ axes.
The four atoms lying on the plane are shown together with
corresponding atoms from adjacent cells. In the right panel
we show a frontal view of that plane and the atoms on it. The
electric field axis is in the plane, shown by the large horizon-
tal axis. The relevant optical phonon coordinates are shown
by the vertical arrows.

There is no linear coupling between electric field and the
phonon coordinates but in second order there are two ways
that they may interact. The polarizability of the electrons
between silicon atoms obviously changes with the separation
of the atoms. As may be seen from the displacement vectors
of the optical phonon, the separation between atoms with
bonds in the #111$ and #1̄11$ directions increase. The bonds
in the #111̄$ and #11̄1$ directions, which are perpendicular to
the plane, decrease in length. Let us call these A and B
bonds, respectively. The polarizability can obviously differ
along the A-bond and B-bond directions when the atoms are
displaced as depicted for the optical phonon coordinate.

In the Raman mechanism, all changes in the electron
wave function are assumed to be adiabatic. Considering the
dielectric tensor as a function of the phonon coordinate, both
the effect of the pump pulse and the response of the probe
pulse can be calculated from knowledge of the macroscopic
dielectric function $ii for the two perpendicular directions i
= #011$ and #011̄$. The dependence on the phonon coordinate
q gives rise to the force generating the phonon as well as the
change in reflectivities needed to observe it. In this mecha-
nism, the pump pulse produces an impulsive force and the
response is sinusoidal with a phase angle #=% /2 in Eq. !1",
independent of the sign of !&ii /!q.

The other mechanism, displacive phonon generation, con-
siders the effect of the internal excitations created by the

pump pulse. For high-field intensity or with high-frequency
laser pulses, the pump pulse creates electron-hole excitations
that persist in the final state. Again, the electrons in the A and
B bond regions may be excited differently, going into differ-
ent orbitals in the conduction bands. The equilibrium lattice
in the presence of electron-hole excitations may show a non-
zero displacement in q. In that case, without any impulsive
force, the phonon amplitude with respect to the new equilib-
rium would be maximal at t=0. This implies that the phase
of the optical phonon would be #=0 or %.

III. FORMALISM

A. Equations of motion

The TDDFT equations for evolution of the electron wave
function are based on the Lagrangian formalism presented in
Ref. 33, treating the electron dynamics in solids induced by a
spatially uniform electric field. The formalism has been ap-
plied to calculations of the dielectric function in linear-
response regime33 and to the description of optical dielectric
breakdown in nonlinear regime.34 For the present applica-
tion, we treat the positions of the ions as additional variables
in the Lagrangian, adding a kinetic term to permit classical
time-dependent dynamics35 #Eq. !4.12"$. Similar treatments
of mixing classical-quantum dynamics have been used in
quantum chemistry to describe molecular reactions and vi-
brational coupling.36 The combined Lagrangian for the
coupled electron-lattice dynamics in solids is

L = %
i
&

'

dr!'(i
!i

!

!t
(i −

1
2m
()− i"! +

e

c
A!*(i(2+

− &
'

dr!,!enion − ene"# − Exc#ne$- +
1

8%
&

'

dr!!"! #"2

+
'

8%c2)dA!

dt
*2

+
1
2%

)

M))dR! )

dt
*2

+
1
c %

)

Z)e
dR! )

dt
A! .

!2"

Here (i are the time-dependent electron orbitals, taken as
Bloch orbitals in a unit cell of volume '. The electromag-
netic fields are represented by two time-dependent terms:
A! !t" is the spatially uniform vector potential which describes
the macroscopic electric field. The field #!r! , t" is the Cou-
lomb potential, assumed to be periodic. Also, ne!r! , t"
=%i.(i!r! , t".2 represents the electron-density distribution. The
corresponding ion density is expressed nion!r! , t"=%)Z)*!r!
−R! )" with Z) the charge numbers and R! ) the coordinates of
the ions. Note also in the second line of Eq. !2" the
exchange-correlation term Exc associated with the energy
functional of DFT.

Variation of the Lagrangian with respect to # immediately
yields the Poisson equation for the Coulomb potential,

"2#!r!,t" = − 4%e#− ne!r!,t" + nion!r!,t"$ . !3"

Variation with respect to (i yields the time-dependent Kohn-
Sham equation,

FIG. 1. !Color online" Geometry of the electric field and the
optical phonon displacement in the eight-atom unit cell. On the left
is shown the geometry of the cell with a cut through the #011$
+ #100$ plane. The atoms on the plane are highlighted in white. The
plane with its atoms is shown at the right in a face view. The long
arrow shows the axis of the electric field and the small arrows show
the direction of the optical phonon coordinates.
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constant and the shift is vanishingly small in this frequency
region, also consistent with the Raman mechanism. One sees
a quite sharp drop from that value to !=0 as the direct gap is
crossed, showing the transition to the displacive behavior.
The amplitude and the shift also show a sudden increase
across the direct gap. Several experimental measurements are
also shown on the figure for the phase. Two of them7,8 are in
the Raman regime. The theory supports the results of Ref. 7,
which reports a value close to " /2. The other measurement
does not appear consistent with our theory or indeed with the
other experiment. The phase has also been measured in the
gap6 region, shown by the square in Fig. 11!b". This point
should be compared with the theory at the corresponding
calculated gap energy, 2.4 eV. In both theory and experiment
the phase has decreased from the Raman value but decrease
seems larger for the experimental measurement. Both results
are in a range where the mechanism is changing rapidly. All
in all, we find the agreement quite satisfactory on a qualita-

tive level, particularly since the phase could have come out
with an opposite sign !!#"".

At higher frequencies, the theoretical phase goes to zero
as expected for the displacive mechanism. We find a change
in the phase from !#0 to !#" between 4.5 and 5 eV. The
amplitude also shows minimum around this frequency re-
gion, and the equilibrium position of the phonon coordinate
q̄ changes sign. In the case of laser frequency of 4.75 eV, a
number of electron-hole pairs contribute destructively, yield-
ing a small shift q̄. We note that the phase ! may not be
defined accurately at this frequency. Physically, this suggests
that different electron orbitals are excited at the high fre-
quency, and those orbitals have an opposite sign contribution
to the displacive shift. In fact, we found earlier that the
deeper hole excitations are favored at the higher frequencies.

D. Laser intensity dependence

We show in Fig. 12 the amplitude and phase of the coher-
ent phonon as a function of the intensity of the laser pulse.
The dependence on intensity is calculated for a frequency
well below the gap !1.0 eV" and one well above !4.0 eV".
One sees in Fig. 12!a" that the amplitude of the phonon is
proportional to the laser intensity in both frequency regions.
In the impulsive Raman mechanism which applied to 1.0 eV
case, this is expected from the adiabatic, Eq. !10". In the
displacive mechanism, this behavior is consistent with a pro-
cess of electron-hole formation in one-photon absorption.

Figure 12!b" shows the phase of the phonon as a function
of the laser intensity. At low intensity, the impulsive Raman
mechanism is responsible for a laser pulse of 1.0 eV fre-
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FIG. 10. !Color online" The displacement q along the optical
phonon coordinate q! =q$100% calculated by integrating the time-
dependent force, assuming a harmonic restoring potential.
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TDDFT:   Phys.  Rev. B 82 15510 (2010)

Silicon

LDA 

Equivalent to perturbative Raman when 
Phonon amplitude is proportional to pulse fluence
    in both reactive and dissipative regions.
Amplitude in dissipative region agrees with
   phenomenological model  of Stevens, Kuhl
   and Merlin, Phys. Rev. B 65 144304 (2002).

Im " = 0
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Physics beyond the linear response

Bozonization:  J. Kas, et al.,  Phys. Rev. B 91 121112 (2015).

Rabi:    D. Bauer,  PRL 102 233001 (2009)

FOH:  Takimoto, et al. J. Chem. Phys. 127 154114 (2007)
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FIG. 3. MCD real-time response S(z)
xy in C60. The solid line in upper panel

shows the evolution for short times, 0 < t < 0.3 fs. The dotted curve is the
expected dependence from Eq. (28). The long-dashed curve shows the re-
sponse in the time range 0 < t < 0.07 fs with the nonlocality in the pseu-
dopotential turned off. The lower panel shows the response in the longer time
interval 0.25 < t < 40 fs on a logarithmic time scale and a magnified ordi-
nate scale.

We now take up the MCD response. The upper panel of
Fig. 3 shows the calculated MCD real-time response S(z)

xy (t)
over the time interval 0 < t < 0.3 fs. The dashed curve in the
upper panel shows the predicted short-time dependence ac-
cording to Eq. (28). The computed time dependence starts out
quadratic as expected, but the coefficient of t2 is lower by 40%
than expected from Eq. (28). To confirm that the nonlocality
of the pseudopotential is responsible for the disagreement, we
have recomputed the response for short times with nonlocality
of the pseudopotentials turned off, shown as the long-dashed
line in Fig. 3. This agrees closely with the expected short-time
behavior. We do not have any explanation why the sum rule
violation is much stronger for the MCD strength than for the
ordinary dipole strength.

The MCD response going to long times is shown on the
lower panel of Fig. 3. It is interesting to note that the am-
plitude of oscillation increases with time. This behavior is in
contrast to the ordinary dipole response, which has a maxi-
mum excursion in the first oscillation. The reason for the in-
crease in amplitude is the presence of the A terms which give
a real-time response that cancels at short times and only be-
comes visible at later times.

Taking the Fourier cosine transform of the real-time re-
sponse using Eq. (20) we find the MCD spectrum shown in
Fig. 4 upper panel. The A-type character of the π−π∗ transi-
tions is clearly seen in the shape of curves, each with a strong
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FIG. 4. MCD response RMCD(E) in C60. Upper panel shows the strength
function Eq. (4). The corresponding integrated strength function is shown in
the lower panel.

alternation of sign over the width of the peaks in the dipole
response function. (Again, there is no physical significance
to the calculated widths since they depend on the integra-
tion limit in the Fourier transform.) It is interesting to see
that the sign of A coefficients can vary from state to state.
The excitation at 5.9 eV has the normal sign, namely nega-
tive on the low-frequency side, but the three lower excitations
have the opposite sign. The four transitions in the figure also
have a significant B-type MCD response, visible by unequal
positive- and negative-going peaks on the two sides of the
transition. The B-type response may be seen more clearly in
the graph of the integrated MCD response,

∫ E d E ′ RMCD(E ′),
shown on the lower panel of Fig. 4. The Bn coefficients can be
read off from the step increases going across each transition,
cf. Eq. (9). The values are reported in Table I divided by the
theoretical dipoles strengths Dn [Eq. (12)]. This is to facilitate

TABLE I. MCD response of the lowest four 1T1u states in C60. The ex-
perimental data is from Ref. 44. Our calculations are given in the columns
labeled TDDFT. The effective orbital g-factor is defined in Eq. (34).

Energy
(eV) Bn/Dn g

Exp. TDDFT Exp. TDDFT Exp. TDDFT Ref. 45

3.8 3.5 100 64 −0.3 ± 0.05 −0.97 −1.0
4.9 4.3 −700 −146 −0.55 ± 0.15 −0.58 −0.75
6.0 5.3 66 −0.20 +0.12

5.9 −120 +0.35
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comes visible at later times.

Taking the Fourier cosine transform of the real-time re-
sponse using Eq. (20) we find the MCD spectrum shown in
Fig. 4 upper panel. The A-type character of the π−π∗ transi-
tions is clearly seen in the shape of curves, each with a strong
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FIG. 4. MCD response RMCD(E) in C60. Upper panel shows the strength
function Eq. (4). The corresponding integrated strength function is shown in
the lower panel.

alternation of sign over the width of the peaks in the dipole
response function. (Again, there is no physical significance
to the calculated widths since they depend on the integra-
tion limit in the Fourier transform.) It is interesting to see
that the sign of A coefficients can vary from state to state.
The excitation at 5.9 eV has the normal sign, namely nega-
tive on the low-frequency side, but the three lower excitations
have the opposite sign. The four transitions in the figure also
have a significant B-type MCD response, visible by unequal
positive- and negative-going peaks on the two sides of the
transition. The B-type response may be seen more clearly in
the graph of the integrated MCD response,

∫ E d E ′ RMCD(E ′),
shown on the lower panel of Fig. 4. The Bn coefficients can be
read off from the step increases going across each transition,
cf. Eq. (9). The values are reported in Table I divided by the
theoretical dipoles strengths Dn [Eq. (12)]. This is to facilitate

TABLE I. MCD response of the lowest four 1T1u states in C60. The ex-
perimental data is from Ref. 44. Our calculations are given in the columns
labeled TDDFT. The effective orbital g-factor is defined in Eq. (34).

Energy
(eV) Bn/Dn g

Exp. TDDFT Exp. TDDFT Exp. TDDFT Ref. 45

3.8 3.5 100 64 −0.3 ± 0.05 −0.97 −1.0
4.9 4.3 −700 −146 −0.55 ± 0.15 −0.58 −0.75
6.0 5.3 66 −0.20 +0.12

5.9 −120 +0.35
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Second-order hyperpolarizability

Experimental value is within the range of tested functionals.
There is a factor of 2-3 between functionals.

J-I Iwata, et al., J. Chem. Phys. 115 8773 (2001)

Ethylene

functional       VWN     BLYP    LB94    Exp.
↵k/1000 14.0     19.2      7.6        9.0+/-0.2

Dynamic Franz-Keldysh Effect
     
    Experiment on GaAs: 
    Novelli, et al., Scientific Reports 3 1227 (2013)

TDDFT by Otobe, et al.,  arXiv:1504.01458:
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Femtosecond time-resolved dynamical Franz-Keldysh effect

T. Otobe1, Y. Shinohara2, S. A. Sato3, and K. Yabana1,3,4
1Kansai Photon Science Institute, Japan Atomic Energy Agency, Kizugawa, Kyoto 619-0615, Japan
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3Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571,Japan
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We theoretically investigate the dynamical Franz-Keldysh effect in femtosecond time resolution,
that is, the time-dependent modulation of a dielectric function at around the band gap under an
irradiation of an intense laser field. We develop a pump-probe formalism in two distinct approaches:
first-principles simulation based on real-time time-dependent density functional theory and analytic
consideration of a simple two-band model. We find that, while time-average modulation may be
reasonably described by the static Franz-Keldysh theory, a remarkable phase shift is found to appear
between the dielectric response and the applied electric field.

In last two decades, intense coherent light of different
characteristics have become available owing to advances
in laser sciences and technologies. Ultrashort laser pulses
can be as short as a few tens of attosecond, forming a
new field of attosecond science [1]. Intense laser pulses of
mid-infrared (MIR) or THz frequencies have also become
available recently [2, 3]. Employing these extreme sources
of coherent light, it is possible to investigate the optical
response of materials in real time with a resolution much
less than an optical cycle[1, 4–8].
The dielectric function ε(ω) is the most fundamental

quantity characterizing the optical properties of matter.
Modulation of the dielectric function in the presence of
electromagnetic fields have been a subject of investiga-
tion for many years. The change under a static elec-
tric field is known as the Franz-Keldysh effect (FKE) [9–
16], and that under an alternating electric field is known
as the dynamical FKE (DFKE) [17–22]. An important
parameter which distinguishes DFKE from the static
FKE is the adiabaticity parameter γ = Up/Ω, where
Up = e2E2/4µΩ2 is the ponderomotive energy, and Ω
is the frequency of the field, µ is the reduced mass of the
electron, and E is the electic field [19]. A multi-photon
picture applies for γ << 1, and a static FKE picture is
appropriate for γ >> 1. Laser pulses having γ ∼ 1 is
an intriguing regime where novel and unobvious DFKE
phenomena are expected.
In previous investigations of DFKE, the main focus

was on the modulation of the optical response averaged
over times much longer than the optical cycle, examining
the time-averaged fine structure [18] and shifts in exci-
tation structures [19]. In the present Letter, we exam-
ine DFKE in time domain, with a resolution much less
than the cycle of the applied optical field. The DFKE
response in subfemtosecond time resolution is very rel-
evant to ultrafast optical switching in the teraherz or
even petahertz (1015 hertz) domain [5, 7]. A first exper-
imental report on the DFKE with a femtosecond time
resolution has recently been given by Novelli et al. [7]
for GaAs, employing an intense pump pulse of THz fre-
quency. They observed an interesting time shift between

the pump pulse and the modulation of dielectric func-
tion, but the mechanism of the observed time profile was
not understood. To uncover the physics of time-resolved
DFKE, we develop a pump-probe formalism in two dif-
ferent theoretical approaches: first-principles numerical
simulations based on time-dependent density functional
theory (TDDFT [25] ) and analytic investigation for a
two-band model. Combining two approaches, we can un-
derstand not only the strength of the modulation but the
phase with respect to the pump field as well.

In real-time TDDFT, we describe electron dynamics
in a unit cell of a crystalline solid under a spatially-
uniform electric field E(t). The method has been ap-
plied for calculations of linear optical responses [26] and
nonlinear electronic excitations by intense laser pulses
[27–33]. Treating the field by a vector potential $A(t) =

−c
∫ t

dt′ $E(t′), the electron dynamics is described by the
following time-dependent Kohn-Sham (TDKS) equation:

i
∂

∂t
ψi($r, t) =

[

1

2m

(

$p+
e

c
$A(t)

)2
+ V ($r, t)

]

ψi($r, t). (1)

where m is the electron mass and V ($r, t) is composed
of electron-ion, electron-electron Hartree, and exchange-
correlation potentials. We use a norm-conserving pseu-
dospotential for the electron-ion potential [34, 35]. For
the exchange-correlation potential, we employ an adia-
batic local density approximation, using the same func-
tional form of the potential for both ground state and
time evolution calculations [36]. We calculate electron
dynamics in diamond, using a cubic unit cell containing
eight carbon atoms. The TDKS equation is solved in
real time and real space. The real-space grids of 223 is
used for the unit cell, and 323 grids for the k-points. The
Taylor expansion method is used for the time evolution
[37] with a time step of ∆t = 0.02 in atomic unit. The
number of time steps is typically 70,000.

An important output of the calculation is the average
electric current density as a function of time. It is given

Figure 1a shows the absorption of a conventional semiconductor
in a static and uniform electric field. The standard ‘‘square root’’
absorption (black curve) in the presence of an electric field (red
curve) is strongly perturbed in the energy region across the band-
gap EGap

15,16: an exponential-tail absorption appears below EGap (also
known as electroabsorption) and an oscillatory behaviour in fre-
quency of the optical properties of the semiconductor is revealed
above the energy of the gap.

When the static electric field is replaced by a time dependent one
(Fig. 1b) the response of the system is described by the Dynamical
Franz-Keldysh effect (DFKE)17–19. The DFKE is qualitatively similar
to the static FKE below the gap (i.e. both effects exhibit an exponen-
tial absorption tail20) but the above-gap oscillations are much weaker
and the absorption edge is blue-shifted by the ponderomotive energy
UP

9,21. When UP is of the same order of magnitude of the photon
energy (c*1) the conduction and valence bands cannot follow adia-
batically the applied EM field and the field-induced opacity is better
described by the DFKE. On the other hand, for growing UP (c?1)
the effects become better and better described by a quasi-static FKE,
which is the proper model for a uniform dc field (c~ ).

Results
Field induced optical absorption experiments. Here we study the
FKE at the transition between a dynamical (c*1) and a quasi-static
regime (c~30?1). To this purpose we developed a pump-probe

experiment which uses strong almost single cycle EM pulses at
THz frequencies as pump and broadband near-infrared pulses as
probe. It is important to note that the probe pulses used in our
experiments are shorter than the THz wavelengths so that our
technique allows the phase sensitive measurement of the DFKE.

Fig. 2 shows the THz electric field in the time domain (a) and a
spectrogram of the observed transmission change DT(t)/T, where
DT(t) is the time-dependent perturbed transmission and T is the
field-free transmission in GaAs (b). At the peak of the THz field
the transmission is reduced by up to 60% (Fig. 2b) at photon energies
just below the band gap. This large modulation is caused by the
strong sub-gap absorption as shown for the static FKE in Fig. 1(a).

Fig. 2c shows the measured DT(t 5 0 ps)/T as function of photon
energy (red curve) compared to the transmission change calculated
from eq.214 assuming a static electric field of 100kV=cm (black curve)
and a square-root gap. The only free parameter of the calculation is a
phenomenological scaling factor accounting for the size of the matrix
elements of the dipole transitions. It should be noted that taking into
account realistic shapes of the equilibrium absorption (including
excitonic effects), rather than a simple square-root gap, gives only
minor differences in the field driven absorption.

While the shape of the change as function of photon energy is
accurately described at every time step, a comparison between Fig. 2a
and Fig. 2b reveals that we cannot reproduce the observed temporal
dependence of the transient transmission by calculating the static
FKE with the THz field profile shown in Fig. 2a. Nevertheless, this

Figure 1 | The Franz-Keldysh effect. (a) The unperturbed absorption edge of a semiconductor (black curve) displays, in a uniform electric field, below-
gap absorption and above-gap oscillations (red curve). Insert: a static electric field tilts the bands enhancing sub-gap tunnelling leading to below-gap
absorption. (b) Dynamical Franz-Keldysh effect detected by pump-probe THz spectroscopy. The bands are tilted with a non-trivial phase relation with
the applied ac fields. Right: sketch of the two limits of the FKE, that is static for infinite c and dynamic for c close to 1 (see text).
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1.  Reflectivity diagnostics--silicon surface
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FIG. 4. The reflectivity of Si at normal incidence is shown as a
function of peak laser intensity.

In Fig. 4, we show the reflectivity as a function of
incident laser intensity. Below 1012 W/cm2, the reflectivity is
constant and in accord with dielectric theory [Eq. (34)]. Above
1012 W/cm2, the reflectivity dips slightly, showing a minimum
around 1013 W/cm2. Above that intensity, the reflectivity starts
to increase gradually, and finally reach 0.75 at the intensity of
5 × 1014 W/cm2. This behavior of reflectivity qualitatively
follows the observed evolution with intensity,21 where it was
interpreted in a dielectric model including the effects of the
excited electrons. We will later compare this model with our
calculated reflectivity function.

B. Excitation in surface layer

We next examine in more detail the first cell at the surface.
The left-hand panel of Fig. 5 shows the vector potential as a
function of time for several laser intensities. From a dielectric
response, we expect that the field inside the Si crystal is related
to the incident field by At = (2/1 +

√
ε)Ai . This relation holds

well below 1012 W/cm2. At higher intensities, the field is less
than this estimate gives. We also observe an oscillation of the
vector potential after the incident pulse ends at 1013 W/cm2,
in accordance with what we found in Fig. 3. We will later
consider this phenomenon with a model dielectric function.
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FIG. 5. The vector potential divided by light speed (left panels)
and electronic excitation energy (right panels) at the surface cell are
shown as a function of time.

The electronic excitation energy in the first cell is shown
in the right-hand panel of Fig. 5. At the lowest intensities,
the electronic energy is carried by the transmitted wave and
leaves the cell after passage of the pulse. As the laser intensity
increases, energy is transferred irreversibly to electronic
excitation, and reaches a plateau after the laser pulse has
passed (t > 15 fs). This is because the only mechanism to
transfer energy between macroscopic grid points is through
the macroscopic electromagnetic fields.

Figure 6 shows some final-state properties of the surface
as a function of intensity. The residual excitation energy is
shown in the left panel. At low intensities, the energy deposited
is proportional to I 2

0 . This is the expected dependence for
two-photon absorption. This is the most favorable absorption
process in view of the photon energy: single-photon absorption
is forbidden below the direct band gap, but the two-photon
process is allowed. At I0 ≈ 1013 W/cm2, the excitation energy
is 0.6 eV per Si atom. This energy is in the form of electron-hole
pairs. The minimum energy of a pair is at the direct band gap,
and is equal to 2.4 eV. However, the excitation process forms a
coherent pair with energies distributed across the valence and
conduction bands. In the TDDFT dynamics, the coherence
is lost after the pulse moves on, but the energy distribution
remains the same.

The number of particle-hole pairs nph in the cell does
not change after the electromagnetic field has passed. Then
the number is calculated as the sum of overlaps of the
time-dependent orbitals and the original Kohn-Sham orbitals,

nph =
∑

i




1 −
∑

j

|〈ψj,Z(0)|ψi,Z(t)〉|2



 , (36)

where the sum over i,j is taken over occupied orbitals. The
results are shown in the right panel of Fig. 6. As seen from
the figure, the density increases quadratically with I0 up to a
point and then continues to increase more gradually. The ratio
of energy density to particle-hole pair density, shown in Fig.
7, has a simple interpretation. At low intensities, up to about
1012 W/cm2, it coincides accurately with two-photon energy,
2h̄ω$ = 3.1 eV. The energy per pair gradually increases at
higher intensities. There one may expect two processes which
increase the energy per pair. One is higher-order multiphoton
absorption, as has been often discussed.42,43 The other is
the secondary excitation of electrons that have already been
excited.

With the information about the particle-hole density nph, we
may interpret the reflectivity curve (Fig. 4) with a model for the
dielectric function that includes plasma effects. For example,
in Refs. 21 and 33, the response of electrons excited in the con-
duction band is described with the Drude model. We consider
the following simplified form for the dielectric function:

ε(ω,nph) = ε(ω,0) −
4πe2nph

m∗
1

ω
(
ω + i

τ

) . (37)

Here, ε(ω,0) is the dielectric function in the ground state; m∗

and τ are parameters of the Drude model. For our comparison,
we take ε(ω,0) from the linear response (see the Appendix) at
ω = ω$ = 1.55 eV. The reflectivity associated with the model
dielectric function is determined from Eq. (34). Figure 8
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FIG. 1. Snapshots of the electromagnetic fields (vector potential
divided by light speed, A/c; left panels) and of the electronic
excitation energy per atom (right panels) at different times, shown
as a function of macroscopic position. The vacuum is at Z < 0 and
the Si crystal is at Z > 0. Top panels: initial starting field, with pulse
on left moving toward the Si surface. Middle panels: at the point
where the middle of the pulse reaches the surface. Lower panels: the
reflected and transmitted pulses are well separated. The maximum
intensity of the incident laser pulse is set at 1011 W/cm2.

This gives T = 0.52 for the case shown in Fig. 1. The dielectric
transmittance can also be expressed purely in terms of ε, giving
T = 1 − R ≈ 0.64. The difference between the two numbers
(0.64 − 0.52) is due to absorption. Thus the theory predicts
that 12% of the energy is absorbed in the first 20 fs for a
pulse of strength 1011 W/cm2. In fact, as may be seen in the
bottom right panel of Fig. 1, we find a certain fraction of the
excitation energy is left in the spatial region where the laser
pulse already passed. Notice that this energy loss is not evident
from the reflectance, which is still consistent with dielectric
theory.

In Fig. 2, we show energies per unit area integrated over
the macroscopic coordinate. In the upper panel, the energy is
decomposed into the vacuum region (Z < 0; green dotted line)
and the Si crystal region (Z > 0; blue dashed line). The sum
of the two contributions is shown by a red solid line, showing
that the total energy is well conserved during the whole period.

In the lower panel, the energy per unit area in the Si crystal
region is decomposed into contributions of electronic exci-
tations and electromagnetic fields. Since the electromagnetic
fields are separated into reflected and transmitted fields after
15 fs, the energy of the Si crystal region does not change in
that period. The energy of the transmitted electromagnetic
fields decreases gradually as it is transferred to electronic
excitation.

We next show reflected and transmitted electromagnetic
fields at different intensity levels. In the left panels of Fig. 3,
the vector potentials are shown at a time when the transmitted
and reflected waves are well separated. In the right panels,
the electronic excitation energies per atom are shown in the
Si crystal region. At the lowest intensity, the propagation of
electromagnetic fields are well described by the dielectric
response. Essentially all of the energy remains associated with
the propagating transmitted pulse. As the incident intensity
increases, the transmitted wave becomes weaker than that
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FIG. 2. (Color online) Energies per unit area integrated over
macroscopic coordinate Z are shown as a function of time. In the
upper panel, the energies integrated over Z < 0 (vacuum), Z > 0
(Si), and the whole region (Total) are compared. In the lower panel,
the energy integrated over the Si crystal region is decomposed into
the field part and the electronic excitation part. The incident laser
pulse is the same as that of Fig. 1.

expected from the linear response. We also find that the central
part of the transmitted pulse is suppressed strongly, producing
a flat envelope of the pulse. In contrast, the envelope of
the reflected wave does not change much in shape, even at
the highest intensity. We also find that at the intensity of
1013 W/cm2, an emission of electromagnetic field is seen from
the surface following the main pulse of the reflected wave.
From the right panels of Fig. 3, above 1012 W/cm2, one sees
that most of the energy is deposited in the medium with just
a small fraction remaining in the transmitted electromagnetic
pulse. The deposition rate falls off with depth, as is expected
from the weakening of the pulse. At higher intensities, the
absorption rate greatly increases. At I0 = 1013 W/cm2 and
higher, the transmitted pulse is almost completely absorbed in
the first tenths of a µm.

-0.01

0

 0.01
1010W/cm2

-0.1

0

 0.1 1012W/cm2

-0.2
0

 0.2

   
   

   
   

   
  A

 / c
 (

a.
u.

)

1013W/cm2

-1
0
1

-10 -8 -6 -4 -2 0 2
Z (µm)

1014W/cm2

0
5×10-5
1×10-4

1010W/cm2

0

 0.005

 0.01 1012W/cm2

0
 0.2
 0.4
 0.6

   
   

   
   

E
xc

ita
tio

n 
en

er
gy

 (
eV

/a
to

m
)

1013W/cm2

0
4
8

0 1 2
Z (µm)

1014W/cm2

FIG. 3. State of the system at t = 21 fs after the peak of the
incident pulse reaches the surface for several different intensities of
the incident laser pulse. Left panel: the field divided by light speed,
A/c. Right panel: excitation energy per atom in the Si crystal.
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is a flattening of the structures associated with the plasma
resonance: !1" the minimum reflectivity value is raised, and
!2" the slope of the reflectivity rise for higher densities is
decreased. Qualitatively speaking, the spatial inhomogeneity
has a similar effect as an increased damping !lower #D).
The latter point is demonstrated by Fig. 6, which shows

the measured reflectivity data at $t!150 fs from Fig. 2 on
an expanded scale. The dashed curve represents the reflec-
tivity calculated from the results of our simulations using the
Fresnel formula, where the spatial variation of the optical
properties is ignored. It is assumed that the plasma density is
constant, and corresponds to the maximum density at the
sample surface as obtained from the simulation. The solid
curve uses the same numerical results as before, but takes
into account the spatial carrier profile. Both models provide a
good approximation to the measured reflectivity up to flu-
ences of about 180 mJ/cm2. While the homogeneous de-
scription fails at higher excitation, a much better fit is ob-
tained with the inhomogeneous model. For the homogeneous
model, a shorter damping #D!0.5 fs is necessary, whereas
for the inhomogeneous model we have #D!1.1 fs. In the
density calculations the latter value was used to determine
% f cr in order to maintain self-consistency between the
density- and the reflectivity-calculations.
The conclusions drawn from Fig. 6 justify the use of a

homogeneous model !Fresnel formula" in the analysis of our
reflectivity data for fluences below 180 mJ/cm2. It is suffi-
cient to adjust the damping constant to account for the spatial
variation of the e-h density. This explains why below
180 mJ/cm2, Eq. !9", which was derived for the carrier den-
sity at the sample surface, gives such a good approximation
of the measured data. Moreover, it becomes quite clear why
there are deviations from the linear dependence in Fig. 3 at
higher fluences. These deviations are not due to changes of
material parameters !i.e., & or mopt* ), but could be naturally
explained by the increasing influence of the steep carrier dis-
tributions and the failure of the homogeneous reflectivity
model. This is also evidenced by the dash-dotted curve in
Fig. 3. This curve has been derived from the simulated re-
flectivity !solid curve in Fig. 6" by applying the same proce-
dure that was used to obtain Ne-h /(mopt* F) from the experi-
mental reflectivity data !open circles in Fig. 3". The dash-

dotted curve reproduces quite well the deviation from the
expected linear behavior at higher fluences, demonstrating
the increasing importance of the spatial inhomogeneity of the
carrier distributions.
It is necessary to make some comments on the influence

of band-gap-shrinkage and state and band filling on the re-
sults of our calculations. These effects should lead to an
increase of both the real and imaginary parts of the dielectric
function with carrier density and thus with fluence F. The
increase of the imaginary part affects the determination of &
(% becomes an increasing function in F). Therefore, the
analysis based on Eq. !9" and a pure Drude model !in con-
junction with the Fresnel formula" tends to overestimate & .
This overestimate is partially canceled by the increase of the
real part of the dielectric function, because it shifts the
plasma resonance to higher densities. The value of & used in
the simulation including all effects !state and band filling,
band-gap shrinkage" is therefore only slightly smaller !45
cm/GW" than the value of 50 cm/GW directly obtained from
the data. A pure but inhomogeneous Drude-model gives a
similar good approximation of our reflectivity data with &
!50 cm/GW. The differences are within the experimental
errors.
The spatial variation of the carrier density also influences

the determination of the absolute carrier density shown in
Fig. 4. The data points correspond to the directly determined
density using a homogeneous reflectivity model !Fresnel for-
mula". Such a description underestimates the carrier density
at the sample surface. The solid line is taken from our simu-
lations used to fit the measured reflectivity, and should be
closer to the true maximum carrier density at the surface.

D. Drude parameter

It is quite remarkable that the Drude model with constant
parameters mopt* and #D provides such a good approximation
of the measured reflectivity. As discussed in Sec. III C, it is
expected that the optical mass increases with carrier
density.12,13 An increase of mopt* should lead to a strong de-
viation from the observed linear behavior of Ne-h /(mopt* F0).
Using the results of our simulations in conjunction with a
density-dependent optical mass,13 the dotted curve in Fig. 3
is calculated from Eq. !9". It is obvious that this curve cannot
describe the data. To be consistent with the data, an increas-
ing optical mass would require additional carrier generation
mechanisms at high carrier densities. For example, & should
double for electron-hole densities around 1022 cm"3. Such
an increase is unlikely, not only because of state-filling ef-
fects which bleach two-photon transitions between the va-
lence and conduction bands. Moreover, from the measured
dispersion of & ,33 it is expected that the TPA coefficient
should also decrease due to band-gap shrinkage. Another
possibility might be impact ionization due to the high plasma
temperature, but it is difficult to assess the importance of this
effect. To obtain a reasonable estimate of the rate of impact
ionization it is necessary to know how the Coulomb interac-
tion between the carriers is screened at high densities. Un-
fortunately, no experimental data are available for high-
density plasmas, and different theoretical viewpoints can be
found in the literature.11,59 A simple static screening model11
suggests that impact ionization should be negligible. On the

FIG. 6. Reflectivity of silicon as a function of laser fluence at a
delay time of 150 fs. Open circles: measured data; dashed curve:
numerical simulation using a homogeneous reflectivity model
!Fresnel formula"; solid line: numerical simulation taking into ac-
count the spatial variation of the optical properties.

2648 PRB 61K. SOKOLOWSKI-TINTEN AND D. von der LINDE

Yabana, et al., Phys. Rev. B 85 045124 (2012)

Sokolowski-Tinten and Linde,  Phys. Rev. B 61 2648 (2000).
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 Intense laser pulses
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2. Surface damage and ablation 
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FIG. 5. Absorbed energy is plotted as a function of local fluence of pulses. Black solid curve shows

a fit by Keldysh’s formula.

is

Ex = AF 5/4 exp(−B/F 1/2). (3)

The two-parameter fit (A = 70 eV-(J/cm2 )−5/4,B= 4.0(J/cm2 )1/2) is shown as the solid

black line in the Figure. One sees that the fit is valid from fluences from well below the

thresholds to the highest calculated. The fit value B = 4.0 can be compared to the value

obtained from a reduction of Keldysh’s exponential factor,

B = πτ 1/2p m1/2ε1/4∆3/2/2, (4)

in atomic units. Taking the reduced mass m = 1/2, the direct band gap ∆ = 9 eV, and

the dielectric constant ε = 2.3, Eq. (4) gives B = 4.2, a difference of only 5% from the fit

value. The multiphoton process is only relevant at much lower fluences that are needed for

structural changes.

Experimental. While it is not entirely clear how energy deposition profiles link to struc-

tural changes in the surface region, we can still compare the theory and experiment assum-
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FIG. 7. Depth of crater formed in SiO2 by single laser pulses of length τp = 7, as a function of

the fluence of the original pulse. Experiment is shown in blue squares, from Ref.10. The red circles

show the depth at which the calculated energy deposition falls below Ex = 6 eV/atom.

to consider a different mechanism for ablation at threshold, which may involve the electric

fields produced when excited electrons are ejected from the surface. It should also be kept

in mind that damage threshold depends on structures of the material; a lower threshold is

reported for fused silica than crystalline SiO2 using much longer pulses39.

As a final theory-experiment comparison, we examine the depth of the ablated craters as

a function of the fluence of the pulses. The available experimental data is shown in Fig. 7.

For the theory, we report the depth at which the deposited energy falls to Ex = 6 eV/atom,

as in Fig. 6. The agreement between theory and experiment is quite satisfactory. The theory

reproduces the very sharp rise above threshold as well as the saturation at high fluences.

Conclusion. We have shown that it is feasible to calculate the interaction of intense fem-

tosecond laser pulses with insulating media by the TDDFT, avoiding the detailed modeling

of plasma formation and dynamics required in earlier theoretical treatments. The threshold

for damage is accounted for by the calculated energy deposition needed to melt the quartz

11

138 O. Utéza et al.

Fig. 6 AFM 3D snapshot (left)
and 1D profile (right) for two
fluences below and above F opt
at short (7 fs) (a, b) and long
(450 fs) (c, d) pulse durations

In the regime where F th < F < F opt, the slope of ab-
lation efficiency is positive (see Fig. 4) and the ablation
highly selective, meaning that a slight change in laser flu-
ence yields a significant change in the ablated characteris-
tics (see Fig. 3). For instance, calibrated removal of small
amounts of material (∼0.2 µm3/µJ) can be accessed close
to the ablation threshold F th. In the same range, a high
selectivity in removal of matter thickness (with resolution
∼10 nm) depending on applied fluence can be reached for a
fixed temporal pulse width (see the inset in Fig. 3b). Varying
the pulse duration allows accessing different depth ranges
from ∼40 to 150 nm for very short pulses (≤30 fs) to ∼40
to 300 nm for longer pulses. Note that in this non-saturated
regime, the crater morphology stays more or less Gaussian.
On a practical viewpoint, one thus needs to dispose a stable

laser for achieving calibration and control of the process.
In our conditions, lasers having ∼3% rms energy fluctua-
tions are used. However, we think that higher removal reso-
lution and control could be obtained with a laser more sta-
ble due to the highly deterministic behavior observed with
femtosecond pulses [5, 6], especially at very short pulse du-
rations [6]. In the framework of machining applications, this
fluence range of magnitude ! = F opt − F th can be labeled
the ‘selective processing fluence window’. This window is
shown to be more extended at long pulse durations ($30 fs)
(see Fig. 8) due to later onset of the plasma shutter effect, but
one should also note a slightly lower quality of precision as
the shot-to-shot fluctuations observed on the ablation char-
acteristics (ablated volume, crater depth, and size) tend to in-
crease with the pulse duration. Increasing the fluence above

Uteza, et al., App. Phys. A 105 131 (2011)

Keldysh:

W =

4m1/4E5/2

9⇡2
�

5/4
exp(�⇡�3/2m1/2/2eE)

Of interest for nanoparticle production, cf. 
Balling and Schou, Rep. Prog. Phys. 96 036502(2013)

fits well with m an adjusted parameter

TDDFT with Becke-Johnson V_xc
Depth of Ablation pit
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Simulating pump-probe experiments

SATO, YABANA, SHINOHARA, OTOBE, AND BERTSCH PHYSICAL REVIEW B 89, 064304 (2014)
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FIG. 3. (Color online) Left panels show the electric field of (a) pump and probe pulses, (b) pump pulse, and (c) probe pulse. Right
panels show the current induced by the (d) pump plus probe pulse and (e) pump pulse only, and (f) the difference of the currents shown
in (d) and (e).

We note that, in principle, the above-defined conductivity
and dielectric function depend also on the time delay τPp

between the pump and probe pulses. We will later show that
the dependence on delay time is rather small, at least for the
real part of the dielectric function.

In practice, we employ the vector potential of the form of
Eq. (4) as the pump pulse. As for the probe pulse, we use the
same functional form as Eq. (4) delayed by an amount τPp

from the pump pulse,

Ap(t) = −c
e0

ωp

cos[ωp(t − τPp)] × sin2[π (t − τPp)/τL],

(10)

for τPp < t < τL + τPp and zero otherwise.
In Fig. 3, we show typical time profiles of the electric fields

and the induced currents for a delay time of τPp = 19 fs. The
pump pulse is the same as in Fig. 1, with a maximum intensity
of 1.0 × 1012 W/cm2. The probe intensity is a factor of 100
smaller, which we deem to be sufficiently weak to extract the
linear response. In the left panels of Fig. 3, we show electric
fields of (a) pump and probe pulses EP (t) + Ep(t), (b) pump
pulse EP (t), and (c) probe pulse Ep(t), as functions of the
time. The right panels show currents induced by the (d) pump
and probe pulses JPp(t), (e) pump pulse only JP (t), and (f) the
difference of the currents Jp(t) of Eq. (7).

The next step is to calculate the dielectric function from
the probe current using Eqs. (8) and (9). The pump-probe
calculation using the probe pulse of Eq. (10) and the probe

current of Eq. (7) gives us dielectric properties around the
average frequency !ωp. To explore the dielectric properties
for a wide frequency region, we repeat the pump-probe
calculations for different frequencies of the probe pulses.

In Fig. 4, we show typical calculations using a number of
probe pulses of differing frequencies. Figures 4(a) and 4(b)
show the absolute values of the Fourier transforms of Ep(t)
and Jp(t), respectively. Figures 4(c) and 4(d) show the real and
imaginary parts of the dielectric function, which is calculated
using Eqs. (8) and (9). The curve is composed of a number of
curves with different colors for each probe frequency. One can
see that the overlap is very good for the different average probe
frequencies, validating our method to extract the dielectric
function.

We have carried out the pump-probe simulations for several
intensities of the pump pulse. The results for the dielectric
functions are shown in Fig. 5. The real and the imaginary parts
are presented in Figs. 5(a) and 5(b), respectively.

The distinguishing feature in the response is the negative
divergence at small frequencies seen in the real part. This
arises from the quasiparticles in the excited system, as we
will see more quantitatively later. The imaginary part of the
response is not quite as simple to analyze. At the strongest case
of I = 5.0 × 1012 W/cm2, the dielectric functions calculated
using probe pulses of different central frequencies are not
connected smoothly. This indicates the imaginary part of
the dielectric function is not well defined under strong
excitation.

064304-4

Sato, et al., Phys. Rev. B 89 064304 (2014).

Dielectric function compared with thermal model in 
Sato, et al.  Phys. Rev. B 90 174303 (2014).
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Summary

1.   Electron-phonon coupling 

2.  First-order hyperpolarizability

2.   Magnetic circular dichroism

3.   Second-order hyperpolarizability

4.   High-field ionization
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