Truly Scalable O(N) Approach for First-Principles Molecular Dynamics of Non-Metallic Systems

Jean-Luc Fattebert and Daniel Osei-Kuffuor Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

LLNL-PRES-673679

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

We want to take advantage of growing computational power to simulate larger and more realistic problems in material sciences

Sequoia, IBM BGQ, 1,572,864 cores

- DFT with Planewaves pseudopotential accuracy (LDA, PBE)
- Fast time to solution
 - 1 step in minutes (not hours!!!) to be useful for MD

Lawrence Livermore National Laboratory

Developing an O(N) algorithm for FPMD implies truncations / approximations

- Unlike classical physics models, in Quantum models the number of physical variables (electrons) grows with system size
 - \rightarrow O(N²) degrees of freedom and O(N³) operations in DFT
- Reducing computational complexity to O(N) typically implies
 - Introduction of controllable approximations / truncate fast decaying terms
 - More complicated data structures sparse vs. full matrices

For systems with band-gap, one can find a representation of the electronic structure with localized functions

Example: C₂H₄

Strictly localized, non-orthogonal, Not centered on atoms (adaptive)

- (orthogonal) Maximally Localized Wannier functions
 - Minimize the sum of the spread of all the functions [Marzari and Vanderbilt, PRB 1997] $\frac{N}{2} / \frac{1}{2}$

$$\sum_{i=1}^{N} \left\langle \phi_{i} \left| \left(\hat{X} - \left\langle \phi_{i} \right| \hat{X} | \phi_{i} \right\rangle \right)^{2} | \phi_{i} \right\rangle$$

Density Functional Theory: general formulation for non-orthogonal orbitals

 Energy minimization for general non-orthogonal orbitals [Galli and Parrinello, PRL 1992]

$$E_{KS}\left[\{\phi\}_{i=1}^{N}\right] = \sum_{i,j=1}^{N} (S^{-1})_{ij} \oint \phi_{i}(r) \Delta \phi_{j}(r) + F[\rho] + \sum_{i,j=1}^{N} (S^{-1})_{ij} \oint \phi_{i}(r) (V_{ext}\phi_{j})(r)$$

$$\rho(r) = \sum_{i,j=1}^{N} (S^{-1})_{ij} \phi_{i}(r) \phi_{j}(r)$$
To take into account non-orthogonality
$$S_{ij} = \int \phi_{i}(r) \phi_{j}(r) dr$$

- Assume finite gap $\mathcal{E}_N < \mathcal{E}_{N+1}$
- Assuming functions ϕ_i are linearly independent...
- No need for any eigenvalue computation!

DFT O(N) algorithm for localized functions

- Real-space (finite difference) discretization
- Norm-conserving pseudopotentials
- Parallel domain decomposition
- Confine functions to finite spherical regions
 - Each Φ_i lives on Finite Difference mesh, in a localization region of center R_i and radius Rc
 - O(1) d.o.f. for each orbital
- Iterative solver: direct minimization of energy functional
 - follow preconditioned steepest descent directions + block Anderson extrapolation scheme [JLF, J. Comp Phys 2010]
 - Truncate trial solution at each step [JLF and Bernholc, PRB 2000, JLF and F. Gygi, Comp Phys Comm 2004, PRB 2006]

There remains an O(N³) operation...

$$E_{KS} \left[\{ \phi \}_{i=1}^{N} \right] = \sum_{i,j=1}^{N} (S^{-1})_{ij} \int_{\Omega} \phi_{i}(r) \Delta \phi_{j}(r) + F[\rho] + \sum_{i,j=1}^{N} (S^{-1})_{ij} \int_{\Omega} \phi_{i}(r) (V_{ext} \phi_{j})(r)$$

$$\rho(r) = \sum_{i,j=1}^{N} (S^{-1})_{ij} \phi_{i}(r) \phi_{j}(r)$$

- Not even expensive, but requiring a lot of communications
 - O(N³) solver becomes a bottleneck beyond 10,000 atoms and/or 10,000 MPI tasks
- Smaller size than in Tight-Binding models or LCAO methods
- "Global" coupling
- Need to calculate selected elements of the inverse of Gram matrix S
- We essentially need the elements S^{-1}_{ii} s.t. $S_{ii} \neq 0$

Gram (overlap) Matrix Properties

$$S_{ij} = \int_{\Omega} \phi_i(r) \phi_j(r) dr$$

 $S_{ij} = 0 \Longrightarrow \left| \vec{c}_i - \vec{c}_j \right| > 2R_c$ $\vec{c}_i = \text{position of } \phi_i$

 $R_c =$ local function radius

- S is sparse, Symmetric Positive Definite
- Condition number is independent of problem size!!
- Inverse
 - In principle full matrix...
 - ...But off-diagonal elements decay exponentially fast [Demko et al., Math. Comp. 1984] [Benzi & Razouk, ETNA 2007]
 - Assumption: spectrum of S bounded away from 0, independently of N

We verify fast exponential decay of off-diagonal elements of the inverse of Gram matrix

- Polymers, 1888 atoms
- How to make efficient use of it on large parallel computers?

O(N) short-range calculation of selected elements of S⁻¹

Based on the approximate inverse strategy

Solve: $\arg\min_{M\in\Re^{N\times N}} \|SM - I\|_F \Rightarrow M \approx S^{-1}, I = \text{identity matrix}$

Sparsity pattern of *M* is predetermined by geometric distance

$$\forall \phi_j \mid \overline{c}_j \in \Omega_L$$
, define $\mathcal{J} = \left\{ k \mid \left| \overline{c}_j - \overline{c}_k \right| < R_s \right\}$

and set $M_{jk} \neq 0 \forall k \in \mathcal{J}$, for some distance R_s

R_s determines accuracy of selected elements of the inverse

Computation of selected elements boils down to inverting local principal submatrix

- Include rows and columns of S corresponding to closest local functions (distance between centers)
- Solve for column k using ILU0–preconditioned GMRES

 Note: S not close to Identity matrix!!! (unlike in Tight-Binding or LCAO approach where no preconditioner is needed [Stechel et al. PRB 1994])

Error on approximate inverse decays fast with principal submatrix size

Data layout

Subdomain associated with an MPI task

- Localized orbital are distributed across processors
- Each MPI task owns pieces of several functions
- Each MPI task computes partial contribution to the global matrices (overlap,...)

Exploiting sparsity poses challenges for fast parallel implementation compared to O(N³) algorithms

Energy can be written as:

 $E_{ks} = Tr(S^{-1}H_{\phi}) + F(\rho)$, where $H_{\phi} = \Phi^T H \Phi$

- S⁻¹ is approximated, sparse and has complete but distributed entries
- H_{ϕ} is sparse and distributed (incomplete entries)
- Each PE only needs entries corresponding to locally centered functions
 - Need to consolidate partial contributions of H_{ϕ}
- Efficient data communication and assembling algorithm is needed

Parallel data communication / matrix assembly is key to efficiency

- Each parallel task compute partial contributions to some matrix elements
- Need to assemble local principal submatrix matrix
 - Sum up partial dot products computed on various processors
- We use a short range communication pattern where data is passed down to nearest neighbor only, one direction at a time, for as many steps as needed

- Overlap communication and computation
 - Accumulate received data in sparse data structure while sending data for next step
- Need to scatter results to *adjacent* processors that need column j of S⁻¹

Three parameters to control error and achieve needed accuracy

- Finite difference Mesh spacing
 - error O(h⁴)
- 2 parameters to control O(N) truncation

Lawrence Livermore National Laboratory

Weak scaling: Test application

- Liquid water
 - 1536 atoms (512 molecules)
 - 2048 orbitals
- Replicate
 - 2x2x2
 - 3x3x3
 - 4x4x4

Lawrence Livermore National Laboratory

Numerical results show excellent weak scaling and fast time to solution (No limit to scaling – in principle)

Lawrence Livermore National Laboratory

18 L

At 100K MPI tasks and beyond, everything needs to be distributed!

Nearsightedness principle for parallel computation

- W. Kohn's nearsightedness principle [PRL 1996]
- Nearsightedness in computational algorithm leads to O(N) and parallel scaling beyond 100,000 MPI tasks
 - Practical accuracy achieved with short range communications / no global communications for insulators

Conclusion

- Research supported by LLNL LDRD program
- Recent Publications
 - D. Osei-Kuffuor and JLF, PRL 2014
 - D. Osei-Kuffuor and JLF, SIAM J. Sci. Comput. 2014
- Future
 - Speed-up time-to-solution (threading)
 - Applications
 - Distribution of ions in dilute solution: K + Cl in water
 - Biology
 - Extension to metals...

