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We want to take advantage of growing computational

power to simulate larger and more realistic problems in
material sciences

Sequoia, IBM BGQ, 1,572,864 cores

For insulators, semiconductors

Large problems
> 5,000 atoms

3.

&

 DFT with Planewaves pseudopotentlal accuracy (LDA, PBE)
» Fast time to solution

« 1 step in minutes (not hours!!!) to be useful for MD
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Developing an O(N) algorithm for FPMD implies
truncations / approximations

= Unlike classical physics models, in Quantum models the number of
physical variables (electrons) grows with system size

« — O(N?) degrees of freedom and O(N3) operations in DFT

= Reducing computational complexity to O(N) typically implies

« Introduction of controllable approximations / truncate fast decaying
terms

- More complicated data structures — sparse vs. full matrices
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For systems with band-gap, one can find a
representation of the electronic structure with
localized functions

Strictly localized, non-orthogonal,
Not centered on atoms (adaptive)

N
j . Auxilliary

“basis set”

= Example: C,H,

= (orthogonal) Maximally Localized Wannier

functions
« Minimize the sum of the spread of all the functions
[Marzari and Vanderbilt, PRB 1997] L ; "
> (X - (4[X]a) o
=1
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Density Functional Theory: general formulation
for non-orthogonal orbitals

= Energy minimization for general non-orthogonal orbitals
[Galli and Parrinello, PRL 1992]

i .1] DS D060+ Flole Xl (et 0

p(r) = X5 (), (1 |
i)j=1 To take into account non-orthogonality

Sij - I¢| (r)¢j (r)dr

h%

= Assume finite gap én <énu
= Assuming functions ¢; are linearly independent...

= No need for any eigenvalue computation!
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DFT O(N) algorithm for localized

functions

Real-space (finite difference) discretization
Norm-conserving pseudopotentials

Parallel domain decomposition

Confine functions to finite spherical regions

- Each @, lives on Finite Difference mesh, in a I
localization region of center R, and radius Rc

« O(1) d.o.f. for each orbital

Iterative solver: direct minimization of energy
functional

- follow preconditioned steepest descent
directions + block Anderson extrapolation
scheme [JLF, J. Comp Phys 2010]

« Truncate trial solution at each step [JLF and
Bernholc, PRB 2000, JLF and F. Gygi, Comp
Phys Comm 2004, PRB 2006]
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There remains an O(N3) operation...

o] SED a1, 0+ Flol+ S E DAVt 0

= Not even expensive, but requiring a lot of communications

« O(NS3) solver becomes a bottleneck beyond 10,000 atoms and/or
10,000 MPI tasks

= Smaller size than in Tight-Binding models or LCAO methods
= “Global” coupling

= Need to calculate selected elements of the inverse of Gram
matrix S

= We essentially need the elements S%; s.t. S5;#0
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Gram (overlap) Matrix Properties
S; =0=[c, -T;|> 2R,

C, = position of ¢
R. = local function radius

Sij ™ I¢| (r)¢j (r)dr

= S Is sparse, Symmetric Positive Definite

= Condition number is independent of problem size!!

= Inverse
« In principle full matrix...

 ...But off-diagonal elements decay exponentially fast

[Demko et al., Math. Comp. 1984] [Benzi & Razouk, ETNA
2007]

« Assumption: spectrum of S bounded away from O,
Independently of N
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We verify fast exponential decay of off-diagonal
elements of the inverse of Gram matrix

Inverse of column entries vs. distance
T T T T

Polymers, 1888 atoms

How to make efficient use
of it on large parallel
computers?
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O(N) short-range calculation of selected
elements of S-*

= Based on the approximate inverse strategy
Solve:arg MIN|SM —1|_. = M ~S™, I = identity matrix
MeRNN
= Sparsity pattern of M Is predetermined by
geometric distance
Vv, ¢, cQ, define I = {k|[c, ¢ | <R,
and set M ; = OVk e £, for some distance R,

= R, determines accuracy of selected elements of
the inverse
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Computation of selected elements boils down
to inverting local principal submatrix

= |nclude rows and columns of S corresponding to closest local
functions (distance between centers)

= Solve for column k using ILUO—preconditioned GMRES
S S~

)

(57)

= Note: S not close to Identity matrix!!! (unlike in Tight-Binding or LCAO

approach where no preconditioner is needed [Stechel et al. PRB
1994])
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Error on approximate inverse decays fast with
principal submatrix size
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Data layout

= Localized orbital are
distributed across
Processors

= Each MPI task owns
pieces of several
functions

= Each MPI task
computes partial
contribution to the
global matrices
(overlap,...)

Subdomain associated with an MPI task

Y
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Exploiting sparsity poses challenges for fast
parallel implementation compared to O(N?3)
algorithms

Energy can be written as:
E.=Tr(S"H,)+F(p),where H, = ®"H®D

S is approximated, sparse and has complete but
distributed entries

H, Is sparse and distributed (incomplete entries)

Each PE only needs entries corresponding to locally
centered functions

- Need to consolidate partial contributions of H,

Efficient data communication and assembling
algorithm is needed
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Parallel data communication / matrix
assembly is key to efficiency

= Each parallel task compute partial contributions to some matrix
elements

= Need to assemble local principal submatrix matrix
« Sum up partial dot products computed on various processors

= We use a short range communication pattern where data is passed
down to nearest neighbor only, one direction at a time, for as many

steps as needed
" =3
2
i

= Overlap communication and computation

« Accumulate received data in sparse data structure while sending
data for next step

= Need to scatter results to adjacent processors that need column j of
S—l
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Three parameters to control error and
achieve needed accuracy

Finite difference Mesh spacing

- error O(h%)

= 2 parameters to control O(N) truncation

error on forces (Ha/Bohr)
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Weak scaling: Test application

= Liquid water
= 1536 atoms (512 molecules)
= 2048 orbitals

= Replicate
— 2X2X2
— 3x3x3
— 4x4x4
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rical results show excellent weak scaling an
o solution (No limit to scaling — in principle)
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K MPI tasks and beyond, everything needs

buted!
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Nearsightedness principle for
parallel computation

= W. Kohn’s nearsightedness principle [PR
= Nearsightedness in computational algorit

_ 1996]
1M

leads to O(N) and parallel scaling beyond
100,000 MPI tasks

« Practical accuracy achieved with short range

communications / no global communications for

Insulators
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Conclusion

= Research supported by LLNL
_DRD program

= Recent Publications
« D. Osei-Kuffuor and JLF, PRL 2014

« D. Osei-Kuffuor and JLF, SIAM J. Sci.
Comput. 2014

= Future
« Speed-up time-to-solution (threading)
« Applications

— Distribution of ions in dilute solution:; K +
Cl in water

— Biology
« Extension to metals...
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