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Sequoia, IBM BGQ, 1,572,864 cores 

Large problems 

> 5,000 atoms 

• DFT with Planewaves pseudopotential accuracy (LDA, PBE) 

• Fast time to solution 

• 1 step in minutes (not hours!!!) to be useful for MD 

 

 

O(N) scalable algorithm 

For insulators, semiconductors 
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 Unlike classical physics models, in Quantum models the number of 

physical variables (electrons) grows with system size  

•  O(N2) degrees of freedom and O(N3) operations in DFT 

 Reducing computational complexity to O(N) typically implies 

• Introduction of controllable approximations / truncate fast decaying 

terms 

• More complicated data structures – sparse vs. full matrices 

 
tolerance 

S-1 
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 Example: C2H4 

 

 

 

 

 (orthogonal) Maximally Localized Wannier 

functions 

• Minimize the sum of the spread of all the functions 

[Marzari and Vanderbilt, PRB 1997] 

 

 

 

 

 

 

 

Strictly localized, non-orthogonal, 

Not centered on atoms (adaptive) 
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Auxilliary 

“basis set” 
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 Energy minimization for general non-orthogonal orbitals 
[Galli and Parrinello, PRL 1992] 

 

 

 

 

 Assume finite gap 

 Assuming functions i are linearly independent… 

 No need for any eigenvalue computation! 
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 Real-space (finite difference) discretization 

 Norm-conserving pseudopotentials 

 Parallel domain decomposition 

 Confine functions to finite spherical regions 

• Each Φi lives on Finite Difference mesh, in a 
localization region of center Ri and radius Rc 

• O(1) d.o.f. for each orbital 

 Iterative solver: direct minimization of energy 
functional 

• follow preconditioned steepest descent 
directions + block Anderson extrapolation 
scheme [JLF, J. Comp Phys 2010] 

• Truncate trial solution at each step [JLF and 
Bernholc, PRB 2000, JLF and F. Gygi, Comp 
Phys Comm 2004, PRB 2006] 
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 Not even expensive, but requiring a lot of communications 
• O(N3) solver becomes a bottleneck beyond 10,000 atoms and/or 

10,000 MPI tasks 

 Smaller size than in Tight-Binding models or LCAO methods 

 “Global” coupling 

 Need to calculate selected elements of the inverse of Gram 
matrix S 

 We essentially need the elements S-1
ij s.t. Sij0  
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 S is sparse, Symmetric Positive Definite 

 Condition number is independent of problem size!! 

 Inverse 
• In principle full matrix… 

• …But off-diagonal elements decay exponentially fast 
[Demko et al., Math. Comp. 1984] [Benzi & Razouk, ETNA 
2007] 

• Assumption: spectrum of S bounded away from 0, 
independently of N 
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 Polymers, 1888 atoms 

 How to make efficient use 

of it on large parallel 

computers? 
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 Based on the approximate inverse strategy 

 

 

 Sparsity pattern of M is predetermined by 
geometric distance 

 

 

 Rs determines accuracy of selected elements of 
the inverse 
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 Include rows and columns of S corresponding to closest local 
functions (distance between centers) 

 Solve for column k using ILU0–preconditioned GMRES 

 

 

 

 

 

 

 Note: S not close to Identity matrix!!! (unlike in Tight-Binding or LCAO 
approach where no preconditioner is needed [Stechel et al. PRB 
1994]) 



Lawrence Livermore National Laboratory 
12 

For internal use only 

Example: polymer 
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 Localized orbital are 
distributed across 
processors 

 Each MPI task owns 
pieces of several 
functions 

 Each MPI task 
computes partial 
contribution to the 
global matrices 
(overlap,…) 

 

Subdomain associated with an MPI task 
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 Energy can be written as: 

 

 S-1 is approximated, sparse and has complete but 
distributed entries 

 Hϕ is sparse and distributed (incomplete entries) 

 Each PE only needs entries corresponding to locally 
centered functions 
• Need to consolidate partial contributions of Hϕ 

 Efficient data communication and assembling 
algorithm is needed 

 

 

 

    where),()( 1   HHFHSTrE T

ks 




Lawrence Livermore National Laboratory 
15 

 Each parallel task compute partial contributions to some matrix 
elements 

 Need to assemble local principal submatrix matrix 

• Sum up partial dot products computed on various processors  

 We use a short range communication pattern where data is passed 
down to nearest neighbor only, one direction at a time, for as many 
steps as needed 

 

 

 Overlap communication and computation 

• Accumulate received data in sparse data structure while sending 
data for next step 

 Need to scatter results to adjacent processors that need column j of 
S-1 
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 Finite difference Mesh spacing 

• error O(h4) 

 2 parameters to control O(N) truncation 

Localization of functions  Cutoff for S-1 (Rc=9 Bohr) 
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 Liquid water 

 1536 atoms (512 molecules) 

 2048 orbitals 

 Replicate 
— 2x2x2 

— 3x3x3 

— 4x4x4 

— … 
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IBM BGQ 
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Distributing atomic positions 

Liquid water on IBM/BGQ 
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 W. Kohn’s nearsightedness principle [PRL 1996] 

 Nearsightedness in computational algorithm 

leads to O(N) and parallel scaling beyond 

100,000 MPI tasks 

• Practical accuracy achieved with short range 

communications / no global communications for 

insulators 
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 Recent Publications 
• D. Osei-Kuffuor and JLF, PRL 2014 

• D. Osei-Kuffuor and JLF, SIAM J. Sci. 
Comput. 2014 

 Future 
• Speed-up time-to-solution (threading) 

• Applications 
— Distribution of ions in dilute solution: K + 

Cl in water 

— Biology 

• Extension to metals… 


