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Sequoia, IBM BGQ, 1,572,864 cores 

Large problems 

> 5,000 atoms 

• DFT with Planewaves pseudopotential accuracy (LDA, PBE) 

• Fast time to solution 

• 1 step in minutes (not hours!!!) to be useful for MD 

 

 

O(N) scalable algorithm 

For insulators, semiconductors 
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 Unlike classical physics models, in Quantum models the number of 

physical variables (electrons) grows with system size  

•  O(N2) degrees of freedom and O(N3) operations in DFT 

 Reducing computational complexity to O(N) typically implies 

• Introduction of controllable approximations / truncate fast decaying 

terms 

• More complicated data structures – sparse vs. full matrices 

 
tolerance 

S-1 
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 Example: C2H4 

 

 

 

 

 (orthogonal) Maximally Localized Wannier 

functions 

• Minimize the sum of the spread of all the functions 

[Marzari and Vanderbilt, PRB 1997] 

 

 

 

 

 

 

 

Strictly localized, non-orthogonal, 

Not centered on atoms (adaptive) 
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 Energy minimization for general non-orthogonal orbitals 
[Galli and Parrinello, PRL 1992] 

 

 

 

 

 Assume finite gap 

 Assuming functions i are linearly independent… 

 No need for any eigenvalue computation! 
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 Real-space (finite difference) discretization 

 Norm-conserving pseudopotentials 

 Parallel domain decomposition 

 Confine functions to finite spherical regions 

• Each Φi lives on Finite Difference mesh, in a 
localization region of center Ri and radius Rc 

• O(1) d.o.f. for each orbital 

 Iterative solver: direct minimization of energy 
functional 

• follow preconditioned steepest descent 
directions + block Anderson extrapolation 
scheme [JLF, J. Comp Phys 2010] 

• Truncate trial solution at each step [JLF and 
Bernholc, PRB 2000, JLF and F. Gygi, Comp 
Phys Comm 2004, PRB 2006] 
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 Not even expensive, but requiring a lot of communications 
• O(N3) solver becomes a bottleneck beyond 10,000 atoms and/or 

10,000 MPI tasks 

 Smaller size than in Tight-Binding models or LCAO methods 

 “Global” coupling 

 Need to calculate selected elements of the inverse of Gram 
matrix S 

 We essentially need the elements S-1
ij s.t. Sij0  
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 S is sparse, Symmetric Positive Definite 

 Condition number is independent of problem size!! 

 Inverse 
• In principle full matrix… 

• …But off-diagonal elements decay exponentially fast 
[Demko et al., Math. Comp. 1984] [Benzi & Razouk, ETNA 
2007] 

• Assumption: spectrum of S bounded away from 0, 
independently of N 
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 Polymers, 1888 atoms 

 How to make efficient use 

of it on large parallel 

computers? 
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 Based on the approximate inverse strategy 

 

 

 Sparsity pattern of M is predetermined by 
geometric distance 

 

 

 Rs determines accuracy of selected elements of 
the inverse 
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 Include rows and columns of S corresponding to closest local 
functions (distance between centers) 

 Solve for column k using ILU0–preconditioned GMRES 

 

 

 

 

 

 

 Note: S not close to Identity matrix!!! (unlike in Tight-Binding or LCAO 
approach where no preconditioner is needed [Stechel et al. PRB 
1994]) 
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For internal use only 

Example: polymer 
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 Localized orbital are 
distributed across 
processors 

 Each MPI task owns 
pieces of several 
functions 

 Each MPI task 
computes partial 
contribution to the 
global matrices 
(overlap,…) 

 

Subdomain associated with an MPI task 
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 Energy can be written as: 

 

 S-1 is approximated, sparse and has complete but 
distributed entries 

 Hϕ is sparse and distributed (incomplete entries) 

 Each PE only needs entries corresponding to locally 
centered functions 
• Need to consolidate partial contributions of Hϕ 

 Efficient data communication and assembling 
algorithm is needed 
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 Each parallel task compute partial contributions to some matrix 
elements 

 Need to assemble local principal submatrix matrix 

• Sum up partial dot products computed on various processors  

 We use a short range communication pattern where data is passed 
down to nearest neighbor only, one direction at a time, for as many 
steps as needed 

 

 

 Overlap communication and computation 

• Accumulate received data in sparse data structure while sending 
data for next step 

 Need to scatter results to adjacent processors that need column j of 
S-1 
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 Finite difference Mesh spacing 

• error O(h4) 

 2 parameters to control O(N) truncation 

Localization of functions  Cutoff for S-1 (Rc=9 Bohr) 
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 Liquid water 

 1536 atoms (512 molecules) 

 2048 orbitals 

 Replicate 
— 2x2x2 

— 3x3x3 

— 4x4x4 

— … 
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IBM BGQ 
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Distributing atomic positions 

Liquid water on IBM/BGQ 
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 W. Kohn’s nearsightedness principle [PRL 1996] 

 Nearsightedness in computational algorithm 

leads to O(N) and parallel scaling beyond 

100,000 MPI tasks 

• Practical accuracy achieved with short range 

communications / no global communications for 

insulators 

 

 



Lawrence Livermore National Laboratory 
21 

 Research supported by LLNL 
LDRD program 

 Recent Publications 
• D. Osei-Kuffuor and JLF, PRL 2014 

• D. Osei-Kuffuor and JLF, SIAM J. Sci. 
Comput. 2014 

 Future 
• Speed-up time-to-solution (threading) 

• Applications 
— Distribution of ions in dilute solution: K + 

Cl in water 

— Biology 

• Extension to metals… 


