Recent developments in auxiliary-field quantum Monte Carlo: magnetic orders and spin-orbit coupling

Hao Shi The College of William and Mary [boruoshihao@gmail.com]

Collaborators:

- Mingpu Qin
- Peter Rosenberg
- Simone Chiesa
- Shiwei Zhang

Outline

- Introduction to AFQMC
 - Release constraint
 - Symmetry in trial wave function
 - Generalized Hartree–Fock (GHF) wave function
- Magnetic orders in 2D Hubbard model
 - Half-filling: restores symmetry
 - > Doped: more accurate results
- Rashba spin-orbit coupling in 2D Fermi gas
 - Interplay between SOC and interaction
 - Singlet triplet pairing wave function
- Conclusion

GHF trial wave function

GHF random walker

Outline

Introduction to AFQMC

- Release constraint
- Symmetry in trial wave function
- Generalized Hartree–Fock (GHF) wave function
- Magnetic orders in 2D Hubbard model
 - Half-filling: restores symmetry
 - > Doped: more accurate results
- Rashba spin-orbit coupling in 2D Fermi gas
 - Interplay between SOC and interaction
 - Singlet triplet pairing wave function
- Conclusion

GHF trial wave function

GHF random walker

Auxiliary-Field Quantum Monte Carlo

- Random walks in non-orthogonal Slater determinat space
- Scales as N^3 : can simulate large systems
- Systematic error with constraint:
 - highly accurate even with Hartree-Fock trial wave function
- Recently, release constraint, symmetry, Generalized HF: systematically improvable QMC method.

Hubbard Model 4x4 7u 7d U=8

Example

• CPMC

Hubbard Model 4x4 7u 7d U=8

Example

• Release the constraint

• Symmetry for wave function Spin in z direction: S_z

PhysRevB.88.125132(2013)

PhysRevB.89.125129(2014)

Symmetry for wave function
 Spin in z direction: S_z
 Total number of particles: N

PhysRevB.88.125132(2013) PhysRevB.89.125129(2014)

Symmetry for wave function
 Spin in z direction: S_z
 Total number of particles: N

PhysRevB.88.125132(2013) PhysRevB.89.125129(2014)

 N_{\uparrow}

Symmetry for wave function
 Spin in z direction: S_z
 Total number of particles: N
 Total spin: S²

 N_{\uparrow}

Symmetry for wave function
 Spin in z direction: S_z
 Total number of particles: N
 Total spin: S²
 Linear Momentum: K

PhysRevB.88.125132(2013) PhysRevB.89.125129(2014)

 N_{\uparrow}

Symmetry for wave function
Spin in z direction: S_z
Total number of particles: N
Total spin: S²
Linear Momentum: K
Space group: rotation, mirror, ...

PhysRevB.88.125132(2013)

 N_{\uparrow}

 N_{\perp}

PhysRevB.89.125129(2014)

 Symmetry for wave function Spin in z direction: S_z Total number of particles: NTotal spin: S^2 Linear Momentum: *K* Space group: rotation, mirror, ... -Closed shell system in Hubbard model: symmetry $-S_z$ and N are natural for UHF trial wave function

PhysRevB.88.125132(2013) PhysRevB.89.125129(2014)

 N_{\uparrow}

 Symmetry for wave function Spin in z direction: S_z Total number of particles: NTotal spin: S^2 Linear Momentum: *K* Space group: rotation, mirror, ... -Closed shell system in Hubbard model: symmetry $-S_z$ and N are natural for UHF trial wave function

Preserve symmetry in projection!

 N_{\uparrow}

 N_{\perp}

PhysRevB.88.125132(2013) PhysRevB.89.125129(2014)

Strongly Correlated Regime

Strongly Correlated Regime

• Large U, highly accurate results Strongly correlated

• Large U, highly accurate results Strongly correlated

• Large U, highly accurate results correlation energy~50%

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

Release constraint: exponential scaling

up-spin

- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

down-spin

UHF

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

UHF

up-spin down-spin

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

- Release constraint: exponential scaling
- Symmetry trial wave function: multi-determinant
- Generalized Hartree–Fock: single-determinant

Outline

- Introduction to AFQMC
 - > Release constraint
 - Symmetry in trial wave function
 - Generalized Hartree–Fock (GHF) wave function

• Magnetic orders in 2D Hubbard model

- Half-filling: restores symmetry
- > Doped: more accurate results
- Rashba spin-orbit coupling in 2D Fermi gas
 - Interplay between SOC and interaction
 - Singlet triplet pairing wave function
- Conclusion

GHF trial wave function

GHF random walker

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

UHF

Break symmetry in z direction. Preserve symmetry in xy direction.

GHF

Break symmetry in xy direction. Preserve symmetry in z direction.

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

UHF

Break symmetry in z direction. Preserve symmetry in xy direction. Preserve symmetry in xy direction.

UHF walker

GHF

Break symmetry in xy direction. Preserve symmetry in z direction. Preserve symmetry in xy direction.

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

UHF

Break symmetry in z direction. Preserve symmetry in xy direction. Preserve symmetry in xy direction.

GHF

Break symmetry in xy direction. Preserve symmetry in z direction. Preserve symmetry in xy direction.

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

UHF

Break symmetry in z direction. Preserve symmetry in xy direction.

GHF

Break symmetry in xy direction. Preserve symmetry in z direction. Preserve symmetry in xy direction.

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

UHF

Break symmetry in z direction. Preserve symmetry in xy direction.

GHF

Break symmetry in xy direction. Preserve symmetry in z direction. Preserve symmetry in xy direction

• 2D repulsive Hubbard model: AFM order at Half-filling.

Trial wave function?

UHF

GHF

Break symmetry in z direction. Preserve symmetry in xy direction.

Preserve symmetry in all directions.

- Half-filling Hubbard model:
 - no sign problem
 - add constraint deliberately
 - largest constraint bias

- Half-filling Hubbard model:
 - no sign problem
 - add constraint deliberately
 - largest constraint bias

- Half-filling Hubbard model:
 - no sign problem
 - add constraint deliberately
 - largest constraint bias

- Half-filling Hubbard model:
 - no sign problem
 - add constraint deliberately
 - largest constraint bias

- Half-filling Hubbard model:
 - no sign problem
 - add constraint deliberately
 - largest constraint bias

More benchmark results: Emanuel Gull's talk!

$$C'_{s}(l_{x}, l_{y}) \equiv (-1)^{l_{y}}C_{s}(l_{x}, l_{y})$$

$$C'_{s}(l_{x}, l_{y}) \equiv (-1)^{l_{y}}C_{s}(l_{x}, l_{y})$$

Outline

- Introduction to AFQMC
 - > Release constraint
 - Symmetry in trial wave function
 - Generalized Hartree–Fock (GHF) wave function
- Magnetic orders in 2D Hubbard model
 - Half-filling: restores symmetry
 - > Doped: more accurate results

• Rashba spin-orbit coupling in 2D Fermi gas

- Interplay between SOC and interaction
- Singlet triplet pairing wave function
- Conclusion

GHF trial wave function

GHF random walker

$$H = \sum_{\mathbf{k}\sigma} k^2 c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + h.c.$$

Rashba SOC: Couples spin to momentum with strength λ allows for spin flips.

$$H = \sum_{\mathbf{k}\sigma} k^2 c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + h.c.$$

Rashba SOC: Couples spin to momentum with strength λ allows for spin flips.

Sample GHF wave function in AFQMC!

$$H = \sum_{\mathbf{k}\sigma} k^2 c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + h.c.$$

Rashba SOC: Couples spin to momentum with strength λ allows for spin flips.

Sample GHF wave function in AFQMC!

SOC and strong interaction in ultra-cold atom experiment.

$$H = \sum_{\mathbf{k}\sigma} k^2 c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + h.c.$$

Particles in the box For details on FG w/o SOC, see arXiv:1504.00925

$$H = \sum_{\mathbf{k}\sigma} k^2 c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c_{\mathbf{k}\downarrow}^{\dagger} c_{\mathbf{k}\uparrow} + h.c.$$
discretization!

Particles in the box For details on FG w/o SOC, see arXiv:1504.00925

Particles in the box

For details on FG w/o SOC, see arXiv:1504.00925

Continuous limit: fix N, send L to infinite

Particles in the box

For details on FG w/o SOC, see arXiv:1504.00925

Continuous limit: fix N, send L to infinite

Particles in the box For details on FG w/o SOC, see arXiv:1504.00925 Continuous limit: fix N, send L to infinite Thermodynamic limit: sent N to infinite

Particles in the box For details on FG w/o SOC, see arXiv:1504.00925 Continuous limit: fix N, send L to infinite Thermodynamic limit: sent N to infinite

Non-Interacting Limit

$$H = \sum_{\mathbf{k}\sigma} k^2 c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + h.c.$$

For U = 0 (i.e. non-interacting):

 $\alpha = \lambda^2 / E_{FG}$ defines the spin-orbit coupling strength.

 $E_{FG} = \pi n$

Momentum Distribution and Spin State $\alpha = 0.0$

• With no SOC $\varepsilon(k)_+ = \varepsilon(k)_-$ the dispersion is the standard k^2 .

Momentum Distribution and Spin State $\alpha = 0.0^+$

- As SOC strength increases, the dispersion separates into two distinct bands: $\varepsilon(k)_+$ and $\varepsilon(k)_-$
- Spin rotates in momentum space

Momentum Distribution and Spin State $\alpha = 0.5$

- As SOC strength increases, the region of k-space where $\ \varepsilon(k)_+$ is occupied shrinks.

Momentum Distribution and Spin State $\alpha = 2.0$

- As SOC strength increases, the region of k-space where $\, \varepsilon(k)_+ \,$ is occupied shrinks.

Momentum Distribution and Spin State $\alpha = 4.0$

Weak SOC to strong SOC transition

Momentum Distribution and Spin State $\alpha = 6.0$

Eventually for strong enough SOC, only the ε(k) band is occupied.
With increasing SOC strength, the region where ε(k) is occupied moves away from k=0, and shrinks.

Momentum Distribution and Spin State $\alpha = 8.0$

• With increasing SOC strength, the region where $\varepsilon(k)_{-}$ is occupied moves away from k=0, and shrinks.

Momentum Distribution and Spin State $\alpha = 8.0$

• With increasing SOC strength, the region where $\varepsilon(k)_{-}$ is occupied moves away from k=0, and shrinks.

Effective 1D density of states, enhances quantum fluctuations!

Momentum Distribution with Interaction

- In weak SOC regime, both bands are occupied.
- As interaction strength increases, occupation spreads to higher k

L=625, N=56
$$lpha=1.0$$

Momentum Distribution with Interaction

- In strong SOC regime, only the lower band is occupied.
- As interaction strength increases, occupation spreads to higher k and higher band.

L=625, N=56 $\alpha=7.0$

Singlet and Triplet Paring

• Singlet pairing

$$\Delta_s^{\dagger}(k) = \frac{1}{2} (c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} - c_{k\downarrow}^{\dagger} c_{-k\uparrow}^{\dagger})$$

• Triplet pairing

$$\Delta^{\dagger}_{\uparrow}(k) = c^{\dagger}_{k\uparrow}c^{\dagger}_{-k\uparrow} \quad \Delta^{\dagger}_{\downarrow}(k) = c^{\dagger}_{k\downarrow}c^{\dagger}_{-k\downarrow}$$

• Pairing matrix

$$M(k\sigma, k'\sigma') = \Delta^{\dagger}_{\sigma}(k)\Delta_{\sigma'}(k')$$

3Lx3L matrix

Outline

- Introduction to AFQMC
 - > Release constraint
 - Symmetry in trial wave function
 - Generalized Hartree–Fock (GHF) wave function
- Magnetic orders in 2D Hubbard model
 - Half-filling: restores symmetry
 - > Doped: more accurate results
- Rashba spin-orbit coupling in 2D Fermi gas
 - Interplay between SOC and interaction
 - Singlet triplet pairing wave function

Conclusion

GHF trial wave function

GHF random walker

Conclusion

- Systematically improvable AFQMC method
 - Release constraint
 - Symmetry in trial wave function
 - Generalized Hartree–Fock (GHF) trial wave function
- Magnetic orders in 2D Hubbard model
 - GHF trial wave function restores symmetry at half-filling
 - GHF trial wave function gives more accurate result in the doped (magnetic), strongly correlated region.
- Rashba spin-orbit coupling in 2D Fermi gas Ongoing!
 - GHF random walkers
 - Interplay between SOC and strong interaction
 - Singlet and triplet pairing For details on FG w/o SOC, see arXiv:1504.00925