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Schematic diagram for hydrogen 
(credit R.W. Lee presentation, LLNL)

Warm Dense Matter:  0.5 eV ≤ T ≤ 100 eV (≈ 1,000,000 K) –

HOT by standards of familiar condensed matter theory 

Densities: from gas to ~ 100 × equilibrium density

• Formation of molecules, clusters, and ions.

• High T & P for familiar quantum mechanical 

methods (quantum chem, cond. matt. Physics)

���� Almost prohibitively expensive 

• But T is low for classical plasma physics 

methods 

���� QM is important.  

• Happy but expensive medium: “ab initio 

molecular dynamics” (AIMD; also called 

“quantum MD”)

A motivating physical problem – Warm Dense Matter
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Motivating computational problem

Image Credit: W. Lorenzen, V. Karasiev

KS equation

Grand potential

�s [n]  = Non-interacting (KS) free energy, �H[n] = Hartree free energy

�xc [n] = eXchange-Correlation (XC) free energy

[ ] [ ] ( ( ) ) ( )extn n d v nµΩ = + −∫ r r rF

[ ] [ ] [ ] [ ]s H xcn n n n= + +F F F F

KS calculational costs scale as 

cube of the number of occupied levels.  

Scaling worsens with increasing T (non-

integer occupation).

Orbital-free Free Energy DFT –

No explicit KS orbitals.

Scales with system size. 

Mermin, 

Hohenberg-Kohn

DFT
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•GGA

•LDA

Credit: SCIDAC Review 17

Approaches to complexity, size, and extreme conditions

(0) Bring finite-T DFT up to date relative to much-more-

developed T=0 K version.

(1) Push on orbital-free DFT for AIMD speed, despite 

conventional wisdom that  OFDFT never has worked.

(2) Work on better functionals at the lower rungs of the 

Perdew-Schmidt Jacob’s ladder of XC functionals because 

orbital-independent functionals are faster.

[Conventional wisdom – higher rung XC functionals are 

required.]

(3) Implement and distribute new functionals and 

capabilities

Remark: success for OFDFT, item (1), 

requires success with  item (2)



Challenges from T-dependence 

1] Accurate orbital-free non-interacting

free energy (KS KE & KS entropy).  

Why?  Speed.  OFDFT scales linearly with

system size, independent of T.

KS

2] XC free energy functional –

needed in both conventional 

KS-AIMD & orbital-free 

AIMD.   Why?  Non-trivial T-

dependence.  At right (for HEG): 
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o DFT theorems provide no constructive 

routes to approximations.  

o No mechanical recipe (e.g. pert. theory) for adding 

complexity (and, presumably, improvements).

T (kK)



▪ Note: no gradient or higher derivative dependence.

▪ Determine fxc
HEG from fit to restricted path integral Monte 

Carlo (RPIMC) data [Brown et al., Phys. Rev. Lett. 110, 146405 

(2013)]

▪ Fit must extrapolate smoothly to correct large-T, T=0, and small 

rs limits.

▪ Fit must be augmented with T-dependent interpolation to 

intermediate spin polarization.

▪ Procedural issue: Four formally equivalent thermodynamic 

relationships between XC internal energy density εxc and XC free 

energy density fxc are not computationally equivalent.  Detailed 

study  led to use of 

Local spin density approximation (LSDA) ����xc [n]
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LSDA ����xc [n]

Phys. Rev. Lett. 112, 076403 (2014)
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a(t), b(t), c(t), d(t), e(t) are functions of t=T/TF with tabulated coefficients.  

Comparison to RPIMC data (red dots) for ζ=0, rs=1 (left) and 40 (right)

for εxc and resulting fxc.

Fitted solution to 

thermodynamic 

differential 

relation



LSDA ����xc [n] – smooth extrapolation to proper limits

Top: ς=0 ; bottom ς= 1“Fit A” is  Phys. Rev. Lett

Also fits rather well to subsequent configuration-PIMC data for rs≤ 1 from Schoof, 

Groth, Vorberger, and Bonitz.  See arXiv 1502.04616, Fig. 5.  
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Equilibrium rs for electron gas at temperature T in 

external field of H-nuclei fixed in simple-cubic 

positions (static, cold sc H ions with hot electrons).

Inhomogeneous Electron Gas (sc-Hydrogen) at finite-T:

Cross-over of 

TLDA & ordinary

LDA (with T-dependent 

density)  is a common 

feature of the T-

dependence.



(r) 0 rv nθ θδ δ= ≥ ∀T

Constraints from Pauli KE and Pauli potential.  Start at T = 0 K.   

An exact decomposition (at all T): 
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Accurate orbital-free non-interacting free energy functional
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Global positivity constraint

M. Levy and H. Ou-Yang, Phys. Rev. B 38, 625 (1988); A. Holas and N.H. March, 

Phys. Rev. A 44, 5521 (1991);  E.V. Ludeña, V.V. Karasiev, R. López-Boada, E. Valderama, 

and J. Maldonado,  J. Comp. Chem. 20, 155 (1999) and references in these] 

Generalized gradient approximation

(GGA) 

Local (pointwise) positivity constraint
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For such a density, the  GGA Pauli potential behaves as

The constants A, B, C depend on detailed form of a specific ����θθθθ approximation
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GGA Constraints for Non-empirical parameterization of TTTTs

1. Kato cusp condition gives density behavior near nucleus, charge Z,    
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2. Recover second-order gradient expansion (SGE) for s<<1 :

4. Obey Lieb upper-bound: [ ] [ ] [ ]s TF W
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GGA for TTTTs
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“VT84F”

Parameters from constraints, not fitting

See Phys. Rev.  B 88, 161108R (2013)

Above: Pauli part of enhancement  

factors.

Positive slope of VT84F for s2 > s2 (0)≈0.375 

guarantees  vθ > 0 near nucleus; all others fail.
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VT84F gives binding.  Other GGAs do not.

At right:  Total E  (relative to min.)  vs. lattice 

constant, for  simple-cubic H.  “APBEK” is L. 

Constantin et al. non-empirical GGA.
[Phys. Rev. Lett. 106,  186406 (2011)].  

Non-empirical ΤΤΤΤ s GGA “VT84F”

Phys. Rev.  B 88, 161108R (2013)
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Form of T-dependent 

reduced  density 

derivative variables 

motivated by  2nd 

order gradient 

expansion.

, ζ, ξ are combinations of 

Fermi-Dirac integrals.  
h%

Finite-T GGA via 

generalized  

reduced density 

variables.

Extension to Finite-T GGA for TTTTs[n] and SSSSs [n]

Phys. Rev. B 86, 115101 (2012) 

from Perrot’s (1979) analytic fit; 

Beware one obviously wrong 

coefficient (exponent) in that fit. 

h%



Express finite-T KE with non-empirical VT84F written with the finite-T 

reduced density variable for KE.  Get entropy functional from an 

approximate thermodynamic symmetry.  
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“VT84F” with 

finite-T gradient 

variables.  

Non-Empirical finite-T GGA for TTTTs [n] and SSSSs [n] 

Phys. Rev. B 88, 161108R (2013)



Deuterium AIMD pressure vs. material density.  New VT84F OFDFT functional  compared 

to KS, both with same T-dependent LDA XC (“TLDA”).  OFDFT had 128 atoms in 

simulation cell, KS 3x3x3 BZ or Gamma point. APBEF is built analogously from APBEK, 

which does not give a bound ground state. [Phys. Rev. B  88, 161108R (2013)]

All together - Warm Dense Deuterium Eq. of State 

AIMD (VT84F & TLDA)



FIGS: Electronic pressure as a function of temperature T. 

INSET: 

METHOD: Kohn-Sham MD at low-T (Quantum-Espresso)

Orbital-free DFT MD at high-T (Profess@Quantum-Espresso)

PIMC: Hu, Militzer, Goncharov, and Skupsky, Phys. Rev. B 84, 224109 (2011)

Warm Dense Deuterium Equation of State
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E E Two issues: (1) Huge error bars on experiment 

(not shown).  (2) Cancellation between internal 

energy difference and PV work difference

terms in Rankine–Hugoniot equation.



Better GGA X enhancement factors

Differing local Lieb-Oxford

bound enforcement

Different large-s

constraints →

subtle low-s changes

Oddity:  All the rather different GGAs we (Mexican collaboration) have 

constructed (VMT, VT{8,4}, PBEmol, PBE-LS) have roughly the same MAE 

report card. All obey the Lieb-Oxford bound locally. 
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Exact limiting behavior of X potential for 

finite systems

v

Try the other large-s limit
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Remarks – (i) This constraint contradicts the one used in 

VT{84) and PBE-LS (a GGA X functional can’t do 

everything);  (ii) It surely is possible to construct a 

density for which this kind of Fx will yield a global LO 

bound violation.  (iii) If such densities are essentially 

unphysical, this form may correspond to a very effective 

X functional (example of “design choice”).  

“Generalized gradient approximation exchange energy functional with correct asymptotic behavior of the

corresponding potential”, Javier Carmona-Espíndola, José L. Gázquez, Alberto Vela, and S. B. Trickey,,

J.Chem. Phys. 142, 054105 (2015)



GGA X enhancement factor oddity

MAJOR ADVANTAGE of CAP: 

correct long-range behavior gives 

substantially better TDDFT 

polarizabilities & hyper-

polarizabilities. 

Oddity is confirmed :  All the rather different GGAs we have constructed 

(VMT, VT{8,4},  PBEmol, PBE-LS, CAP) have roughly the same MAE report 

card on the standard test sets.  

J. Carmona-Espíndola, J.L. Gázquez, A. Vela, and S.B. Trickey,, J.Chem. Phys. 142, 045105 (2015)

CAP



Implementation: finite-T LDA in FEFF9

Approaching correct high-T limit?  

Under examination.

Huh?

No XC is the same as Finite-T XC?

L. Calderín, May 2015, unpublished

HCP Beryllium Compton profiles at fixed, 

T=0 K crystal structure from various XC 

approximations.



Software: PROFESS@QuantumEspresso

• Drives QuantumEspresso with 

OFDFT forces from modified 

PROFESS

• Includes our finite-T functionals

• Provided as patch files and 

libraries, plus test cases.  

• Download from 

www.qtp.ufl.edu/ofdft

and give it a try (GPL).
• V. Karasiev, T. Sjostrom and S.B. 

Trickey, Comput. Phys. Commnun. 

185, 3240 (2014)

Publications, preprints & software -http://www.qtp.ufl.edu/ofdft

New June 2015! The LDA XC free energy module also is downloadable



Summary 

1. Explicit T-dependence in XC is important for accurate prediction of 

properties of electron gas at finite-T and for accurate equations of state at 

elevated T.

2. The KSDT XC functional fitted to Brown et al. data appears to be 

consistent with the recent Schoof et al. data as well.  

3. There is major progress on a constraint-based, single-point non-interacting 

functional (KS KE plus entropy). 

4. Caveat: The VT84F functional does not work at low densities – underlying 

reasons are under investigation.  

5. Caveat: All good OFDFT non-interacting free energy functionals exhibit 

odd behavior with respect so some pseudopotentials.

6. Hugoniot calculations of liquid hydrogen are not sensitive to the 

LDA(XC)����TLDA(XC) replacement. This may change when our finite-T

GGA XC functional (under development) is used.

7. Progress on lower-rung XC functionals still is possible.

8. Introduction of finite-T functionals into spectroscopic and response 

function calculations is in its infancy, with some initial surprises. 

Publications, preprints, & software at 

http://www.qtp.ufl.edu/ofdft


