Electronic Structure 2018

Interaction Physics in Semimetals

Fei Xue Fengcheng Wu Juanjo Palacios AHM - UT Austin

The Standard Model of Chemistry

Many-Electron Quantum Mechanics

... and this proves we don't really know about anything ...

Electronic Structure of Bilayer Graphene

Coulomb Interactions and Continuum Models

David Pines

Random Phase Approximation

1924-2018

2D Topological Insulators

Xue & AHM, arXiv:1710.00410 PRL (2018)

Exciton Superfluids

Excitons - Elementary Excitations of Intrinsic Semiconductors

Bose-Einstein Condensation

Einstein 1925

 $n = \frac{(2\pi m \kappa T)^{\frac{3}{2}} V \tilde{z}_{T}^{-\frac{3}{2}} \dots (24)}{\ell^{3}}$

University of Leiden Einstein Archive

Burg et al. arXiv:1802.07331 - PRL (2018)

Burg et al. arXiv:1802.07331 - PRL - to appear

Burg et al. arXiv:1802.07331 - PRL (2018)

Xue & AHM, arXiv:1710.00410 PRL (2018)

Quantum Anomalous Hall Effect

Sublattice-Pseudospins

Band Eigenstate Pseudospins

Band Eigenstate Pseudospins

$$\mathcal{H} = \beta m c^2 + \hbar c \vec{\alpha} \cdot \vec{k}$$

Massive Dirac Equation - 3D

Sublattice Staggered Potential

$$\mathcal{H} = \tau_z m v^2 + \hbar v \vec{\tau} \cdot \vec{k}$$

Massive Dirac Equation -2D

Momentum Space Vortex Core

δn ≈ 10-5/C
∆ ≈ 10-2 eV

Gapped States in Bilayer Graphene

Bao, Velasco Nature Phys. (2011), arXiv:1108

Xue & AHM, arXiv:1710.00410 PRL (2018)

Nematic and Chern Insulators

Excitonic Insulator to BHZ model

Mean-Field Theory - QSHI/NI

Nematic Insulator

Mean-Field Theory - QSHI/NI

QSH Insulator

Xue & AHM, arXiv:1710.00410 PRL (2018)

Mind the Gap

Less Simple Systems

The 1T' TMDs

Qian et al. Science (2014) Choe et al. PRB, 93, 125109 (2016) Meuchler et al. PRX, 6, 041069 (2016) The Coulomb interaction's long range must be retained in the theory of interaction effects in semiconductors and semi-metals and are often accurately described by GW approximations

 Broken Symmetries are Common in weakly correlated semiconductors and semimetals – especially in candidate topological materials Electronic Structure 2018

Interaction Physics in Semimetals

Fei Xue Fengcheng Wu Juanjo Palacios AHM

