Optically-Controlled Orbitronics on the Triangular Lattice

Vo Tien Phong, Zach Addison, GM, Seongjin Ahn, Hongki Min, Ritesh Agarwal

Office of Science

SEOUL NATIONAL UNIVERSITY

Topics for today

- Motivation: Cu₂Si (Feng et al. Nature Comm. 8, 1007 (2017))
- Model: L=1 manifold on a triangular lattice
- Anomalous Hall and Orbital Hall Effects
 with Optical Control
- More material realizations

Background I: Anomalous Velocity

Equation of motion for an electron wavepacket in a band

$$\hbar \dot{k} = -eE - e\dot{r} \times B \qquad \text{CM}$$
$$\dot{r} = \frac{\partial E}{\hbar \partial k} - \frac{\dot{k} \times \Omega(k)}{\Delta k} \qquad \text{QM}$$

 Ω is the BERRY CURVATURE. It comes from an (<u>unremovable</u>) k-dependence of some internal degree of freedom of the w.p.

 $\Omega \neq 0$ requires broken <u>time reversal symmetry</u> (anomalous Hall effect) or <u>broken inversion symmetry</u> (harder to see)

Background II (some things we already know)

Anomalous transverse transport appears in <u>nonequilibrium states</u> with asymmetric valley population

Background III (what we'd like to do)

$\textbf{Population} \rightarrow \textbf{Coherent Optical Control}$

- break symmetries via optical fields
- engineer Bloch k-space connections
- anomalous topological responses "on demand"

Comments:

- low- ω responses by downconverting optical fields
- frequency, phase and polarization
- intrinsically nonlinear (estimates of intensities at end)

Topics for today

- Motivation: Cu₂Si (Feng et al. Nature Comm. 8, 1007 (2017))
 - Model: L=1 manifold on a triangular lattice
 - Anomalous Hall and Orbital Hall Effects
 with Optical Control
 - More material realizations

Discovery of two-dimensional Dirac nodal line fermions

Baojie Feng,¹ Botao Fu,² Shusuke Kasamatsu,¹ Suguru Ito,¹ Peng Cheng,³ Cheng-Cheng Liu,² Sanjoy K. Mahatha,⁴ Polina Sheverdyaeva,⁴ Paolo Moras,⁴ Masashi Arita,⁵ Osamu Sugino,¹ Tai-Chang Chiang,⁶ Kehui Wu,³ Lan Chen,^{3,*} Yugui Yao,^{2,†} and Iwao Matsuda^{1,‡}

Si (blue) embedded in a coplanar Cu honeycomb (gold)

Discovery of two-dimensional Dirac nodal line fermions

Baojie Feng,¹ Botao Fu,² Shusuke Kasamatsu,¹ Suguru Ito,¹ Peng Cheng,³ Cheng-Cheng Liu,² Sanjoy K. Mahatha,⁴ Polina Sheverdyaeva,⁴ Paolo Moras,⁴ Masashi Arita,⁵ Osamu Sugino,¹ Tai-Chang Chiang,⁶ Kehui Wu,³ Lan Chen,^{3,*} Yugui Yao,^{2,†} and Iwao Matsuda^{1,‡}

Band structures with and without spin orbit

Discovery of two-dimensional Dirac nodal line fermions

Baojie Feng,¹ Botao Fu,² Shusuke Kasamatsu,¹ Suguru Ito,¹ Peng Cheng,³ Cheng-Cheng Liu,² Sanjoy K. Mahatha,⁴ Polina Sheverdyaeva,⁴ Paolo Moras,⁴ Masashi Arita,⁵ Osamu Sugino,¹ Tai-Chang Chiang,⁶ Kehui Wu,³ Lan Chen,^{3,*} Yugui Yao,^{2,†} and Iwao Matsuda^{1,‡}

Measured in ARPES

Matrix-valued intersite hopping on a primitive lattice

H is real : two independent control parameters (sum of cosines in Cartesian basis) \rightarrow h_y =0

Intersection of $I_z \neq 0$ and $I_z = 0$ bands are the **line nodes** protected by z-mirror symmetry.

Other nodes (twofold band degeneracies in $I_z \neq 0$ sector) occur only at **exceptional points**

Bands on primitive triangular lattice (p-states)

<u>Notes</u>: d_z violates *T*C_2 symmetry

C_3: requires twofold degeneracy at Γ , K.

Counting Rules for J=1

$$H_{\text{axial}}(\vec{k}) = \begin{pmatrix} 0 & d^*(\vec{k}) \\ d(\vec{k}) & 0 \end{pmatrix}$$

∆m= ±2

$$\Gamma: \Delta m = \pm 2 \mod 6 = (2, -4), (-2, 4) \rightarrow J=2$$

K: Δm = ±2 mod 3 = (2, -1),(-2,1) → J=-1 (there are two of these in BZ)

$$H_{\text{axial}}(q) = \begin{pmatrix} 0 & q_{-}^{2} \\ q_{+}^{2} & 0 \end{pmatrix}_{\Gamma}; \begin{pmatrix} 0 & \pm q_{+} \\ \pm q_{-} & 0 \end{pmatrix}_{K,K'}$$

Graphene in a pseudospin (sublattice) basis

$$H(\vec{k}) = \begin{pmatrix} 0 & d^*(\vec{k}) \\ d(\vec{k}) & 0 \end{pmatrix}$$

Nodes (i.e. d=0) also occur on exceptional points

$$H_{\text{axial}}(q) = \begin{pmatrix} 0 & q_{-} \\ q_{+} & 0 \end{pmatrix}_{K}; \begin{pmatrix} 0 & -q_{+} \\ -q_{-} & 0 \end{pmatrix}_{K'}$$

Compensated partners on opposite valleys

Momentum Space Phase Profiles

Counting Rules Redux

Graphene:
$$1_{K} + (-1)_{K'} = 0$$

Cu₂Si: $2_{\Gamma} + (-1)_{K} + (-1)_{K'} = 0^{(a)}$

uncompensated pair

 $^{(a)}$ Note: energies at Γ and K are generically unequal

Sign selection with a twist

- global twofold band degeneracies get lifted by $\alpha \neq 0$
- **sgn**($\alpha\beta$): velocity reversal at $\alpha=0$ is the critical point
- choice is revealed in its gapped variants

Precedents and Observables

Gapping out the point nodes liberates the Berry curvature

But, on the honeycomb lattice (and its heteropolar variants) this can be accessed in transport only for **valley antisymmetric** mass terms (which <u>eat the minus sign</u>: FDMH-Chern insulator, K-M QSH-state)

or... possibly by forcing a valley asymmetric nonequilibrium state

Instead this physics is directly accessed using valley symmetric (e.g. local and spatially uniform) fields.

Examples

- Break T: couple to T-odd pseudovector: gaps WP's, LN protected by z-mirror (magnetism, CPL at normal incidence)
- Break z-mirror (I): couple to a T-even tensor partially gaps LN → Weyl Pair (buckling, strain)
- Break z-mirror (II): couple to T-odd tensor fully gap LN (axial state, noncollinear magnetism)

Examples

- Break T: couple to T-odd pseudovector: gaps WP's, LN protected by z-mirror (magnetism, CPL at normal incidence)
- Break z-mirror (I): couple to T-even tensor partially gaps LN → Weyl Pair (buckling, strain)
- Break z-mirror (II): couple to T-odd tensor fully gap LN (axial state, noncollinear magnetism)

Anomalous Hall from Curvature

$$\sigma_{\alpha\beta} = \frac{e^2}{\hbar} \frac{1}{N\Omega} \sum_{k,n} F_{\alpha\beta,n} f(\mathcal{E}_n(k) - \mu)$$

$$F_{\alpha\beta,n} = \partial_{k_{\alpha}} A_{\beta,n} - \partial_{k_{\beta}} A_{\alpha,n}$$
$$A_{\alpha,n} = -i \left\langle u_{n}(k) \mid \partial_{k_{\alpha}} u_{n}(k) \right\rangle$$

Gapping by **on site** σ_z (orbital Zeeman field)

Berry curvature from site localized T-breaking term

Recall: on honeycomb: σ_z staggered sublattice

Hall conductance vs. band filling

Hall conductance vs. band filling

Bulk or Boundary ?

Both (viz. either)

(borrowed from hep lecture notes)

Topics for today

- Motivation: Cu₂Si (Feng et al. Nature Comm. 8, 1007 (2017))
- Model: L=1 manifold on a triangular lattice
- Anomalous Hall and Orbital Hall Effects with <u>Optical Control</u>
 - More material realizations

Optical control

Orbital Zeeman field can be imposed optically

Couple to circularly polarized light

 $\mathcal{H}_{\text{int}} = \mathbf{r} \cdot \mathbf{E} \, \cos \omega t - s \, \hat{n} \cdot (\mathbf{r} \times \mathbf{E}) \, \sin \omega t$

and integrate out the first Floquet bands

$$\operatorname{Tr}[L_z \cdot \mathcal{H}_{\text{eff}}] = \left[\frac{\omega}{\Delta(\mathbf{k})^2 - \omega^2}\right] \mathcal{E}_+(\omega) \mathcal{E}_+(-\omega)$$

Odd in ω , proportional to intensity and can be spatially modulated

Interband Selection Rules

mixing <u>with</u> population inversion mixing <u>without</u> population inversion

Floquet-Magnus Expansion

$$\begin{aligned} \mathcal{H}_{\rm eff}(\mathbf{k}) &= \mathcal{P}\mathcal{H}_0(\mathbf{k})\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega}\mathcal{P}L_+\mathcal{Q}L_-\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega}\mathcal{P}L_-\mathcal{Q}L_+\mathcal{P} \\ &= \begin{pmatrix} h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega} & h_1(\mathbf{k}) \\ h_1^*(\mathbf{k}) & h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega} \end{pmatrix}. \end{aligned}$$

$$\delta(\mathbf{k}) = \frac{e^2 \alpha^2 I \hbar \omega}{c \epsilon_0 (\Delta(\mathbf{k}) - \hbar \omega) (\Delta(\mathbf{k}) + \hbar \omega)}.$$

 δ ~100 meV: E~10⁸ (10⁹) on(off) resonance @ crystal field Δ

Lindenberg (2011), Nelson (2013), Rubio (2015), Averitt (2017)

Can we induce a k-space tilt?

untilted

tilted Type I

tiltedType II

<u>FLO(quet)-NO-GO</u>: linear-in-intensity terms → constant (absence of linear-in-q terms)

Closing Comments and Open Items

- More material realizations (Cu₂Si is not optimal, but the model is generic¹)
 - Spin (magnetism, spin orbit, etc)
 - Quenched orbital angular momentum at boundaries (anomalous transport without edge states)

¹Closely related models on a 2D <u>honeycomb</u>:

Topological bands for optical lattices: C. Wu *et al.* (2007-8) Low energy models for small angle moire t-BLG (2018)

Optically-Controlled Orbitronics on the Triangular Lattice

Vo Tien Phong, Zach Addison, GM, Seongjin Ahn, Hongki Min, Ritesh Agarwal

Office of Science

SEOUL NATIONAL UNIVERSITY